Wire-based directed energy deposition of NiTiTa shape memory alloys: Microstructure, phase transformation, electrochemistry, X-ray visibility and mechanical properties

Xinde Zuo, Wei Zhang, Yi Chen, J. P. Oliveira, Zhi Zeng, Yang Li, Zhen Luo, Sansan Ao

Research output: Contribution to journalArticlepeer-review

103 Citations (Scopus)
65 Downloads (Pure)

Abstract

Wire and arc additive manufacturing (WAAM) technology was used for the fabrication of NiTiTa (2.5 at. % Ta) shape memory alloys (SMAs) for the first time, using commercialy available NiTi wire and Ta foil as the feedstock materials. The addition of Ta significantly increased the phase transformation temperatures, leading to a room-temperature microstructure composed of both B19′ martensite and B2 austenite, and (Ti,Ta)2Ni precipitates distributed at the grain boundaries. Compared with the WAAM fabricated NiTi counterpart, the corrosion potential (Ecorr) of the NiTiTa material increased from − 0.55 to − 0.44 V, while the corrosion current density (Icorr) decreased from 1.90 × 10−6 to 4.2 × 10−7 A/cm2. The X-ray brightness increased from 19.6 to 56.4 %. These results indicate that the addition of Ta can enhance the corrosion resistance and X-ray visibility of NiTiTa parts. Furthermore, the WAAM fabricated NiTiTa material was able to retain a stable superelastic response under 10 loading-unloading cycles, highlighting the great potential application value in the biomedical field. Our work provides an innovative method for additively manufacturing NiTi-based multi-component SMAs through WAAM.

Original languageEnglish
Article number103115
Number of pages12
JournalAdditive Manufacturing
Volume59
DOIs
Publication statusPublished - Nov 2022

Keywords

  • Electrochemical corrosion behavior
  • NiTiTa ternary shape memory alloy
  • Superelasticity
  • Wire arc additive manufacturing
  • X-ray visibility

Fingerprint

Dive into the research topics of 'Wire-based directed energy deposition of NiTiTa shape memory alloys: Microstructure, phase transformation, electrochemistry, X-ray visibility and mechanical properties'. Together they form a unique fingerprint.

Cite this