Weissella halotolerans W22 combines arginine deiminase and ornithine decarboxylation pathways and converts arginine to putrescine

Research output: Contribution to journalArticlepeer-review

22 Citations (Scopus)


Aims: To demonstrate that the meat food strain Weissella halotolerans combines an ornithine decarboxylation pathway and an arginine deiminase (ADI) pathway and is able to produce putrescine, a biogenic amine. Evidence is shown that these two pathways produce a proton motive force (PMF). Methods and Results: Internal pH in W. halotolerans was measured with the sensitive probe 2',7'-bis-(2-carboxyethyl)-5(and-6)-carboxyfluorescein. Membrane potential was measured with the fluorescent probe 3,3'-dipropylthiocarbocyanine iodine. Arginine and ornithine transport studies were made under several conditions, using cells loaded or not loaded with the biogenic amine putrescine. ADI pathway caused an increase in Delta pH dependent on the activity of F(0)F(1)ATPase. Ornithine decarboxylation pathway generates both a Delta pH and a Delta Psi. Both these pathways lead to the generation of a PMF. Conclusions: Weissella halotolerans W22 combines an ADI pathway and an ornithine decarboxylation pathway, conducing to the production of the biogenic amine putrescine and of a PMF. Transport studies suggest the existence of a unique antiporter arginine/putrescine in this lactic acid bacteria strain. Significance and Impact of the Study: The coexistence of two different types of amino acid catabolic pathways, leading to the formation of a PMF, is shown for a Weissella strain for the first time. Moreover, a unique antiport arginine/putrescine is hypothesized to be present in this food strain.
Original languageUnknown
Pages (from-to)1894-1902
JournalJournal Of Applied Microbiology
Issue number6
Publication statusPublished - 1 Jan 2009

Cite this