Abstract
We show that if the Hardy–Littlewood maximal operator is bounded on a separable Banach function space X(R) and on its associate space X′(R) , then the space X(R) has an unconditional wavelet basis. This result extends previous results by Soardi (Proc Am Math Soc 125:3669–3673, 1997) for rearrangement-invariant Banach function spaces with nontrivial Boyd indices and by Fernandes et al. (Banach Center Publ 119:157–171, 2019) for reflexive Banach function spaces. We specify our result to the case of Lorentz spaces Lp,q(R, w) , 1 < p< ∞, 1 ≤ q< ∞ with Muckenhoupt weights w∈ Ap(R).
Original language | English |
---|---|
Pages (from-to) | 1669-1689 |
Number of pages | 21 |
Journal | Bulletin Of The Malaysian Mathematical Sciences Society |
Volume | 44 |
Issue number | 3 |
DOIs | |
Publication status | Published - May 2021 |
Keywords
- Associate space
- Banach function spaces
- Hardy–Littlewood maximal operator
- Unconditional wavelet basis