TY - JOUR
T1 - Valorization of Reground Pasta By-Product through PHA Production with Phototrophic Purple Bacteria
AU - Marchetti, Angela
AU - Palhas, Miguel
AU - Villano, Marianna
AU - Fradinho, Joana
N1 - info:eu-repo/grantAgreement/EC/H2020/836884/EU#
info:eu-repo/grantAgreement/FCT/Concurso de avaliação no âmbito do Programa Plurianual de Financiamento de Unidades de I&D (2017%2F2018) - Financiamento Programático/UIDP%2F04378%2F2020/PT#
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04378%2F2020/PT#
info:eu-repo/grantAgreement/FCT/Concurso para Atribuição do Estatuto e Financiamento de Laboratórios Associados (LA)/LA%2FP%2F0140%2F2020/PT#
Funding Information:
The JU receives support from the European Union’s Horizon 2020 research and innovation program and the Bio-based Industries Consortium. M.P. acknowledges the financial support of FCT (Fundação para a Ciência e a Tecnologia) through the Ph.D. grant DFA/BD/05659/2020.
Publisher Copyright:
© 2024 by the authors.
PY - 2024/4/3
Y1 - 2024/4/3
N2 - Annually, the food industry generates large amounts of waste and by-products, causing serious problems in their management and final disposal. In particular, by-products are mainly recovered as livestock feed. A most appealing strategy to valorize them has herein been investigated, through polyhydroxyalkanoate (PHA) production. In this view, a stream rich in volatile fatty acids deriving from the acidogenic fermentation of reground pasta (RP), a farinaceous food-industry by-product, was used as a carbon source for PHA production with a phototrophic purple bacteria (PPB) consortium. PPB are very versatile organisms that present a unique metabolism allowing them to adapt to a variety of environmental conditions. The PPB-PHA enrichment phase was performed in a lab-scale semi-continuous photo-bioreactor under a permanent carbon feast regime, with organic loading rate (OLR) increments from 14 to 19 mmolC/Ld. The results showed that the fermented RP solution composition (with 23.4% of HV precursors on a COD basis) was suitable for the PHBHV copolymer production, with the PPB consortium being capable of reaching a very high content in the hydroxyvalerate (HV) monomer, with a maximum of 60% (gHV/gPHA). Regarding the PHA accumulation stage where the light intensity was increased up to 20.2 W/L, a further increase in the culture PHA content by 76% after 12 h was obtained. Overall, these results open the possibility of valorizing food-industry by-products through the development of a biocatalytic process for PHA production with PPB, thus making the overall approach more sustainable from a green perspective.
AB - Annually, the food industry generates large amounts of waste and by-products, causing serious problems in their management and final disposal. In particular, by-products are mainly recovered as livestock feed. A most appealing strategy to valorize them has herein been investigated, through polyhydroxyalkanoate (PHA) production. In this view, a stream rich in volatile fatty acids deriving from the acidogenic fermentation of reground pasta (RP), a farinaceous food-industry by-product, was used as a carbon source for PHA production with a phototrophic purple bacteria (PPB) consortium. PPB are very versatile organisms that present a unique metabolism allowing them to adapt to a variety of environmental conditions. The PPB-PHA enrichment phase was performed in a lab-scale semi-continuous photo-bioreactor under a permanent carbon feast regime, with organic loading rate (OLR) increments from 14 to 19 mmolC/Ld. The results showed that the fermented RP solution composition (with 23.4% of HV precursors on a COD basis) was suitable for the PHBHV copolymer production, with the PPB consortium being capable of reaching a very high content in the hydroxyvalerate (HV) monomer, with a maximum of 60% (gHV/gPHA). Regarding the PHA accumulation stage where the light intensity was increased up to 20.2 W/L, a further increase in the culture PHA content by 76% after 12 h was obtained. Overall, these results open the possibility of valorizing food-industry by-products through the development of a biocatalytic process for PHA production with PPB, thus making the overall approach more sustainable from a green perspective.
KW - food-industry by-product valorization
KW - permanent carbon feast regime
KW - phototrophic purple bacteria
KW - polyhydroxyalkanoates
UR - http://www.scopus.com/inward/record.url?scp=85191306581&partnerID=8YFLogxK
U2 - 10.3390/catal14040239
DO - 10.3390/catal14040239
M3 - Article
AN - SCOPUS:85191306581
SN - 2073-4344
VL - 14
JO - Catalysts
JF - Catalysts
IS - 4
M1 - 239
ER -