TY - JOUR
T1 - Unlocking the potential of snake venom-based molecules against the malaria, Chagas disease, and leishmaniasis triad
AU - Almeida, José Rafael
AU - Gomes, Ana S. M.
AU - Mendes, Bruno
AU - Aguiar, Luísa
AU - Ferreira, Mariana
AU - Brioschi, Mariana Borges Costa
AU - Duarte, Denise
AU - Nogueira, Fátima
AU - Cortes, Sofia
AU - Salazar-Valenzuela, David
AU - Miguel, Danilo C.
AU - Teixeira, Cátia A. S.
AU - Gameiro, Paula
AU - Gomes, Paula
N1 - Funding Information:
This work received financial support from PT national funds ( FCT/MCTES , Fundação para a Ciência e Tecnologia and Ministério da Ciência, Tecnologia e Ensino Superior) through the project CIRCNA/BRB/0281/2019 .
Funding Information:
This work received financial support from PT national funds (FCT/MCTES, Fundação para a Ciência e Tecnologia and Ministério da Ciência, Tecnologia e Ensino Superior) through the project CIRCNA/BRB/0281/2019.The authors further thank FCT/MCTES for supporting Research Units LAQV-REQUIMTE (UIDB/50006/2020), GHTM (UID/Multi/04413/2020).
Publisher Copyright:
© 2023 The Authors
PY - 2023/7/1
Y1 - 2023/7/1
N2 - Malaria, leishmaniasis and Chagas disease are vector-borne protozoal infections with a disproportionately high impact on the most fragile societies in the world, and despite malaria-focused research gained momentum in the past two decades, both trypanosomiases and leishmaniases remain neglected tropical diseases. Affordable effective drugs remain the mainstay of tackling this burden, but toxicicty, inneficiency against later stage disease, and drug resistance issues are serious shortcomings. One strategy to overcome these hurdles is to get new therapeutics or inspiration in nature. Indeed, snake venoms have been recognized as valuable sources of biomacromolecules, like peptides and proteins, with antiprotozoal activity. This review highlights major snake venom components active against at least one of the three aforementioned diseases, which include phospholipases A2, metalloproteases, L-amino acid oxidases, lectins, and oligopeptides. The relevance of this repertoire of biomacromolecules and the bottlenecks in their clinical translation are discussed considering approaches that should increase the success rate in this arduous task. Overall, this review underlines how venom-derived biomacromolecules could lead to pioneering antiprotozoal treatments and how the drug landscape for neglected diseases may be revolutionized by a closer look at venoms. Further investigations on poorly studied venoms is needed and could add new therapeutics to the pipeline.
AB - Malaria, leishmaniasis and Chagas disease are vector-borne protozoal infections with a disproportionately high impact on the most fragile societies in the world, and despite malaria-focused research gained momentum in the past two decades, both trypanosomiases and leishmaniases remain neglected tropical diseases. Affordable effective drugs remain the mainstay of tackling this burden, but toxicicty, inneficiency against later stage disease, and drug resistance issues are serious shortcomings. One strategy to overcome these hurdles is to get new therapeutics or inspiration in nature. Indeed, snake venoms have been recognized as valuable sources of biomacromolecules, like peptides and proteins, with antiprotozoal activity. This review highlights major snake venom components active against at least one of the three aforementioned diseases, which include phospholipases A2, metalloproteases, L-amino acid oxidases, lectins, and oligopeptides. The relevance of this repertoire of biomacromolecules and the bottlenecks in their clinical translation are discussed considering approaches that should increase the success rate in this arduous task. Overall, this review underlines how venom-derived biomacromolecules could lead to pioneering antiprotozoal treatments and how the drug landscape for neglected diseases may be revolutionized by a closer look at venoms. Further investigations on poorly studied venoms is needed and could add new therapeutics to the pipeline.
KW - Peptides
KW - Snake venoms
KW - Vector-borne protozoan infections
UR - http://www.scopus.com/inward/record.url?scp=85159300337&partnerID=8YFLogxK
U2 - 10.1016/j.ijbiomac.2023.124745
DO - 10.1016/j.ijbiomac.2023.124745
M3 - Review article
C2 - 37150376
SN - 0141-8130
VL - 242
SP - 124745
JO - International Journal of Biological Macromolecules
JF - International Journal of Biological Macromolecules
IS - Pt 2
M1 - 124745
ER -