Unfolding pathway of CotA-laccase and the role of copper on the prevention of refolding through aggregation of the unfolded state

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)


Copper is a redox-active metal and the main player in electron transfer reactions occurring in multicopper oxidases. The role of copper in the unfolding pathway and refolding of the multicopper oxidase CotA laccase in vitro was solved using double-jump stopped-flow experiments. Unfolding of apo- and holo-CotA was described as a three-state process with accumulation of an intermediate in between the native and unfolded state. Copper stabilizes the native holo-CotA but also the intermediate state showing that copper is still bound to this state. Also, copper binds to unfolded holo-CotA in a non-native coordination promoting CotA aggregation and preventing refolding to the native structure. These results gather information on unfolding/folding pathways of multicopper oxidases and show that copper incorporation in vivo should be a tight controlled process as copper binding to the unfolded state under native conditions promotes protein aggregation
Original languageUnknown
Pages (from-to)442-446
JournalBiochemical and Biophysical Research Communications
Issue number3
Publication statusPublished - 1 Jan 2012

Cite this