Abstract
Solution based deposition has been recently considered as a viable option for low-cost flexible electronics. In this context research efforts have been increasingly centred on the development of suitable solution-processed materials for oxide based transistors. Nevertheless, the majority of synthetic routes reported require the use of toxic organic solvents. In this work we report on a new environmental friendly solution combustion synthesis route, using ethanol as solvent, for the preparation of indium/gallium free amorphous zinc-tin oxide (ZTO) thin film transistors (TFTs) including AlOx gate dielectric. The decomposition of ZTO and AlOx precursor solutions, electrical characterization and stability of solution processed ZTO/AlOx TFTs under gate-bias stress, in both air and vacuum atmosphere, were investigated. The devices demonstrated low hysteresis (ΔV=0.23 V), close to zero turn on voltage, low threshold voltage (VT=0.36 V) and a saturation mobility of 0.8 cm2 V-1 s-1 at low operation voltages. Ethanol based ZTO/AlOx TFTs are a promising alternative for applications in disposable, low cost and environmental friendly electronics.
Original language | English |
---|---|
Article number | 024007 |
Journal | Semiconductor Science And Technology |
Volume | 30 |
Issue number | 2(SI) |
DOIs | |
Publication status | Published - 1 Feb 2015 |
Keywords
- aluminum oxide
- combustion reaction
- ethanol solution synthesis
- solution TFTs
- ZTO