TY - JOUR
T1 - TiO2 nanostructured films for electrochromic paper based-devices
AU - Nunes, Daniela
AU - Freire, Tomas
AU - Barranger, Andrea
AU - Vieira, João
AU - Matias, Mariana
AU - Pereira, Sónia
AU - Pimentel, Ana
AU - Cordeiro, Neusmar J. A.
AU - Fortunato, Elvira
AU - Martins, Rodrigo
N1 - info:eu-repo/grantAgreement/FCT/5876/147333/PT#
info:eu-repo/grantAgreement/EC/H2020/692373/EU#
(H2020-NMP-2015, grant 685758-21D
H2020 ERC AdG 787410)
PY - 2020/2/11
Y1 - 2020/2/11
N2 - Electrochromic titanium dioxide (TiO2) nanostructured films were grown on gold coated papers using a microwave-assisted hydrothermal method at low temperature (80 °C). Uniform nanostructured films fully covered the paper substrate, while maintaining its flexibility. Three acids, i.e., acetic, hydrochloric and nitric acids, were tested during syntheses, which determined the final structure of the produced films, and consequently their electrochromic behavior. The structural characteristics of nanostructured films were correlated with electrochemical response and reflectance modulation when immersed in 1 M LiClO4-PC (lithium perchlorate with propylene carbonate) electrolyte, nevertheless the material synthesized with nitric acid resulted in highly porous anatase films with enhanced electrochromic performance. The TiO2 films revealed a notable contrast behavior, reaching for the nitric-based film optical modulations of 57%, 9% and 22% between colored and bleached states, at 250, 550 and 850 nm, respectively in reflectance mode. High cycling stability was also obtained performing up to 1500 cycles without significant loss of the electrochromic behavior for the nitric acid material. The approach developed in this work proves the high stability and durability of such devices, together with the use of paper as substrate that aggregates the environmentally friendly, lightweight, flexibility and recyclability characters of the substrate to the microwave synthesis features, i.e., simplicity, celerity and enhanced efficiency/cost balance.
AB - Electrochromic titanium dioxide (TiO2) nanostructured films were grown on gold coated papers using a microwave-assisted hydrothermal method at low temperature (80 °C). Uniform nanostructured films fully covered the paper substrate, while maintaining its flexibility. Three acids, i.e., acetic, hydrochloric and nitric acids, were tested during syntheses, which determined the final structure of the produced films, and consequently their electrochromic behavior. The structural characteristics of nanostructured films were correlated with electrochemical response and reflectance modulation when immersed in 1 M LiClO4-PC (lithium perchlorate with propylene carbonate) electrolyte, nevertheless the material synthesized with nitric acid resulted in highly porous anatase films with enhanced electrochromic performance. The TiO2 films revealed a notable contrast behavior, reaching for the nitric-based film optical modulations of 57%, 9% and 22% between colored and bleached states, at 250, 550 and 850 nm, respectively in reflectance mode. High cycling stability was also obtained performing up to 1500 cycles without significant loss of the electrochromic behavior for the nitric acid material. The approach developed in this work proves the high stability and durability of such devices, together with the use of paper as substrate that aggregates the environmentally friendly, lightweight, flexibility and recyclability characters of the substrate to the microwave synthesis features, i.e., simplicity, celerity and enhanced efficiency/cost balance.
KW - Electrochromic stability and durability
KW - Microwave irradiation
KW - Paper substrates
KW - TiO nanostructured films
UR - http://www.scopus.com/inward/record.url?scp=85081238358&partnerID=8YFLogxK
U2 - 10.3390/app10041200
DO - 10.3390/app10041200
M3 - Article
AN - SCOPUS:85081238358
SN - 2076-3417
VL - 10
JO - Applied Sciences
JF - Applied Sciences
IS - 4
M1 - 1200
ER -