Three-dimensional multilayered fibrous constructs for wound healing applications

Tiago C. Reis, Steven Castleberry, Ana M B Rego, Ana Aguiar-Ricardo, Paula T. Hammond

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)

Abstract

Electrospun materials are promising scaffolds due to their light-weight, high surface-area and low-cost fabrication, however, such scaffolds are commonly obtained as ultrathin two-dimensional non-woven meshes, lacking on topographical specificity and surface side-dependent properties. Herein, it is reported the production of three-dimensional fibrous materials with an asymmetrical inner structure and engineered surfaces. The manufactured constructs evidence fibrous-based microsized conical protrusions [length: (10 ± 3) × 102 μm; width: (3.8 ± 0.8) × 102 μm] at their top side, with a median peak density of 73 peaks per cm2, while their bottom side resembles to a non-woven mesh commonly observed in the fabrication of two-dimensional electrospun materials. Regarding their thickness (3.7 ± 0.1 mm) and asymmetric fibrous inner architecture, such materials avoid external liquid absorption while promoting internal liquid uptake. Nevertheless, such constructs also observed the high porosity (89.9%) and surface area (1.44 m2 g-1) characteristic of traditional electrospun mats. Spray layer-by-layer assembly is used to effectively coat the structurally complex materials, allowing to complementary tailor features such as water vapor transmission, swelling ratio and bioactive agent release. Tested as wound dressings, the novel constructs are capable of withstanding (11.0 ± 0.3) × 104 kg m-2 even after 14 days of hydration, while actively promote wound healing (90 ± 0.5% of wound closure within 48 hours) although avoiding cell adhesion on the dressings for a painless removal.

Original languageEnglish
Pages (from-to)319-330
Number of pages12
JournalBiomaterials Science
Volume4
Issue number2
DOIs
Publication statusPublished - Feb 2016

Keywords

  • LAYER-BY-LAYER
  • POLYMER NANOFIBERS
  • IN-VITRO
  • BIOMEDICAL APPLICATIONS
  • ELECTROSPUN SCAFFOLDS
  • MECHANICAL-PROPERTIES
  • SURFACE-CHEMISTRY
  • PLASMA TREATMENT
  • HYALURONIC-ACID
  • CELL-MIGRATION

Fingerprint

Dive into the research topics of 'Three-dimensional multilayered fibrous constructs for wound healing applications'. Together they form a unique fingerprint.

Cite this