The role of network science in glioblastoma

Marta B. Lopes, Eduarda P. Martins, Susana Vinga, Bruno M. Costa

Research output: Contribution to journalReview articlepeer-review

4 Citations (Scopus)
48 Downloads (Pure)


Network science has long been recognized as a well-established discipline across many biological domains. In the particular case of cancer genomics, network discovery is challenged by the multitude of available high-dimensional heterogeneous views of data. Glioblastoma (GBM) is an example of such a complex and heterogeneous disease that can be tackled by network science. Identifying the architecture of molecular GBM networks is essential to understanding the information flow and better informing drug development and pre-clinical studies. Here, we review network-based strategies that have been used in the study of GBM, along with the available software implementations for reproducibility and further testing on newly coming datasets. Promising results have been obtained from both bulk and single-cell GBM data, placing network discovery at the forefront of developing a molecularly-informed-based personalized medicine.

Original languageEnglish
Article number1045
Pages (from-to)1-22
Number of pages22
Issue number5
Publication statusPublished - 2 Mar 2021


  • Biomarker selection
  • Causal discovery
  • Differential network expression
  • Model regularization
  • Multi-omics
  • Network analysis
  • Personalized therapy
  • Precision medicine


Dive into the research topics of 'The role of network science in glioblastoma'. Together they form a unique fingerprint.

Cite this