The role of CCNH Val270Ala (rs2230641) and other nucleotide excision repair polymorphisms in individual susceptibility to well-differentiated thyroid cancer.

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)

Abstract

Well-differentiated thyroid cancer (DTC) is the most common form of thyroid cancer (TC); however, with the exception of radiation exposure, its etiology remains largely unknown. Several single nucleotide polymorphisms (SNPs) have previously been implicated in DTC risk. Nucleotide excision repair (NER) polymorphisms, despite having been associated with cancer risk at other locations, have received little attention in the context of thyroid carcinogenesis. In order to evaluate the role of NER pathway SNPs in DTC susceptibility, we performed a case-control study in 106 Caucasian Portuguese DTC patients and 212 matched controls. rs2230641 (CCNH), rs2972388 (CDK7), rs1805329 (RAD23B), rs3212986 (ERCC1), rs1800067 (ERCC4), rs17655, rs2227869 (ERCC5), rs4253211 and rs2228529 (ERCC6) were genotyped using TaqMan® methodology, while conventional PCR-RFLP was employed for rs2228000 and rs2228001 (XPC). When considering all DTC cases, only rs2230641 (CCNH) was associated with DTC risk; a consistent increase in overall DTC risk was observed for both the heterozygous genotype (OR=1.89, 95% CI=1.14-3.14) and the variant allele carriers (OR=1.79, 95% CI=1.09-2.93). Histological stratification analysis confirmed an identical effect on follicular TC (OR=2.72, 95% CI=1.19-6.22, for heterozygous; OR=2.44, 95% CI=1.07‑5.55, for variant allele carriers). Considering papillary TC, the rs2228001 (XPC) variant genotype was associated with increased risk (OR=2.33, 95% CI=1.05-5.16), while a protective effect was observed for rs2227869 (ERCC5) (OR=0.26, 95% CI=0.08‑0.90, for heterozygous; OR=0.25, 95% CI=0.07-0.86, for variant allele carriers). No further significant results were observed. Our results suggest that NER polymorphisms such as rs2230641 (CCNH) and, possibly, rs2227869 (ERCC5) and rs2228001 (XPC), may influence DTC susceptibility. However, larger studies are required to confirm these results.
Original languageEnglish
Pages (from-to)2458-66
Number of pages7
JournalOncology Reports
Volume30
Issue number5
DOIs
Publication statusPublished - Dec 2013

Keywords

  • CCNH
  • DNA repair
  • genetic susceptibility
  • nucleotide excision repair
  • single nucleotide polymorphisms
  • well-differentiated thyroid cancer

Fingerprint

Dive into the research topics of 'The role of CCNH Val270Ala (rs2230641) and other nucleotide excision repair polymorphisms in individual susceptibility to well-differentiated thyroid cancer.'. Together they form a unique fingerprint.

Cite this