TY - JOUR
T1 - The electronic states of isoxazole studied by VUV absorption, electron energy-loss spectroscopies and ab initio multi-reference configuration interaction calculations
AU - Walker, Isobel C.
AU - Palmer, Michael H.
AU - Delwiche, Jacques
AU - Hoffmann, S. V.
AU - Limão-vieira, Paulo Manuel Assis Loureiro
AU - Mason, Nigel J.
AU - Ģuest, Martyn F.
AU - Hubin-Franskin, Marie Jeanne
AU - Heinesch, Jacques
AU - Giuliani, Alexandre
PY - 2004/2/16
Y1 - 2004/2/16
N2 - The VUV absorption spectrum of isoxazole (5-10.8 eV, 250-115 nm) has been recorded for the first time. The molecule has also been probed using electron impact with electrons of different incident energies and the He(I) photoelectron spectrum has been re-measured. Electronic excitation energies for valence and Rydberg-type states have been computed using multi-reference multi-root CI methods. Calculated energies for Rydberg states are close to those expected, but the precision of the calculated 1ππ* states is more variable, especially for the lowest members. More than 30 valence excited states having finite oscillator strengths are computed to lie between 6 and 12 eV, but most of the intensity in the VUV absorption spectrum is from excitation of states of 1ππ* character. From the results of the calculations, it is concluded that the first two 1ππ* states lie at about 6 and 7 eV, respectively, and are separated by a state of type 1σπ*, where σ is nitrogen lone pair; dominant higher bands near 8 and 9 eV are also largely 1ππ* in character. The lowest-lying triplet states, located by experiment at about 4.1 eV and 5.3 eV, are calculated to be 3ππ*. Short-lived anionic states (electron-molecule resonances) have been detected in both inelastic scattering and dissociative electron attachment channels. Some one-electron properties derived from the ground state wavefunction of the molecule have also been computed for comparison with experiment.
AB - The VUV absorption spectrum of isoxazole (5-10.8 eV, 250-115 nm) has been recorded for the first time. The molecule has also been probed using electron impact with electrons of different incident energies and the He(I) photoelectron spectrum has been re-measured. Electronic excitation energies for valence and Rydberg-type states have been computed using multi-reference multi-root CI methods. Calculated energies for Rydberg states are close to those expected, but the precision of the calculated 1ππ* states is more variable, especially for the lowest members. More than 30 valence excited states having finite oscillator strengths are computed to lie between 6 and 12 eV, but most of the intensity in the VUV absorption spectrum is from excitation of states of 1ππ* character. From the results of the calculations, it is concluded that the first two 1ππ* states lie at about 6 and 7 eV, respectively, and are separated by a state of type 1σπ*, where σ is nitrogen lone pair; dominant higher bands near 8 and 9 eV are also largely 1ππ* in character. The lowest-lying triplet states, located by experiment at about 4.1 eV and 5.3 eV, are calculated to be 3ππ*. Short-lived anionic states (electron-molecule resonances) have been detected in both inelastic scattering and dissociative electron attachment channels. Some one-electron properties derived from the ground state wavefunction of the molecule have also been computed for comparison with experiment.
KW - isoxazole
KW - ab initio calculation
KW - X ray photoelectron spectroscopy
KW - absorption spectroscopy
KW - article
KW - electron
KW - electron energy loss spectroscopy
UR - http://www.scopus.com/record/display.uri?eid=2-s2.0-1642556788&origin=resultslist&sort=plf-f&src=s&st1
U2 - 10.1016/j.chemphys.2003.10.012
DO - 10.1016/j.chemphys.2003.10.012
M3 - Article
VL - 297
SP - 289
EP - 306
JO - Chemical Physics
JF - Chemical Physics
SN - 0301-0104
IS - 1-3
ER -