The Cauchy singular integral operator on weighted variable Lebesgue spaces

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

20 Citations (Scopus)

Abstract

Let $p:\R\to(1,\infty)$ be a globally log-H\"older continuous variable exponentand $w:\R\to[0,\infty]$ be a weight. We prove that the Cauchy singular integraloperator $S$ is bounded on the weighted variable Lebesgue space$L^{p(\cdot)}(\R,w)=\{f:fw\in L^{p(\cdot)}(\R)\}$ if and only if the weight $w$satisfies\[\sup_{-\infty<a<b<\infty}\frac{1}{b-a}\|w\chi_{(a,b)}\|_{p(\cdot)}\|w^{-1}\chi_{(a,b)}\|_{p'(\cdot)}<\infty\quad (1/p(x)+1/p'(x)=1).\]
Original languageUnknown
Title of host publicationOperator Theory: Advances and Applications
Pages275-291
ISBN (Electronic)978-3-0348-0648-0
DOIs
Publication statusPublished - 1 Jan 2014
EventConcrete Operators, Spectral Theory, Operators in Harmonic Analysis and Approximation. 22nd International Workshop in Operator Theory and its Applications, Sevilla, July 2011 -
Duration: 1 Jan 2011 → …

Conference

ConferenceConcrete Operators, Spectral Theory, Operators in Harmonic Analysis and Approximation. 22nd International Workshop in Operator Theory and its Applications, Sevilla, July 2011
Period1/01/11 → …

Cite this