Tail Conditional Expectations Based on Kumaraswamy Dispersion Models

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)
13 Downloads (Pure)

Abstract

Recently, there seems to be an increasing amount of interest in the use of the tail conditional expectation (TCE) as a useful measure of risk associated with a production process, for example, in the measurement of risk associated with stock returns corresponding to the manufacturing industry, such as the production of electric bulbs, investment in housing development, and financial institutions offering loans to small-scale industries. Companies typically face three types of risk (and associated losses from each of these sources): strategic (S); operational (O); and financial (F) (insurance companies additionally face insurance risks) and they come from multiple sources. For asymmetric and bounded losses (properly adjusted as necessary) that are continuous in nature, we conjecture that risk assessment measures via univariate/bivariate Kumaraswamy distribution will be efficient in the sense that the resulting TCE based on bivariate Kumaraswamy type copulas do not depend on the marginals. In fact, almost all classical measures of tail dependence are such, but they investigate the amount of tail dependence along the main diagonal of copulas, which has often little in common with the concentration of extremes in the copula’s domain of definition. In this article, we examined the above risk measure in the case of a univariate and bivariate Kumaraswamy (KW) portfolio risk, and computed TCE based on bivariate KW type copulas. For illustrative purposes, a well-known Stock indices data set was re-analyzed by computing TCE for the bivariate KW type copulas to determine which pairs produce minimum risk in a two-component risk scenario.
Original languageEnglish
Number of pages17
JournalMathematics
Volume9
Issue number13
DOIs
Publication statusPublished - 24 Jul 2021

Keywords

  • Asymmetric losses
  • Bivariate Kumaraswamy distribution
  • Bivariate Kumaraswamy type copulas
  • Bounded risk
  • Copula-based tail conditional expectation
  • Tail conditional expectations
  • Tail value-at-risk

Fingerprint

Dive into the research topics of 'Tail Conditional Expectations Based on Kumaraswamy Dispersion Models'. Together they form a unique fingerprint.

Cite this