Synthesis and structural characterisation of (aryl-BIAN)copper(I) complexes and their application as catalysts for the cycloaddition of azides and alkynes

Lidong Li, Patrícia S. Lopes, Vitor Rosa, Cláudia A. Figueira, M. Amélia N D A Lemos, Maria Teresa Duarte, Maria Teresa Avilés, Pedro T. Gomes

Research output: Contribution to journalArticlepeer-review

65 Citations (Scopus)

Abstract

A series of Ar-BIAN-based copper(I) complexes (where Ar-BIAN = bis(aryl) acenaphthenequinonediimine) were synthesised and characterised by H-1 and C-13 NMR spectroscopies, FT-IR spectroscopy, MALDI-TOF-MS spectrometry, cyclic voltammetry and single crystal X-ray diffraction. The bis-chelated complexes of general formula [Cu(Ar-BIAN)(2)]BF4 (where Ar = C6H5 (1), 4-iPrC(6)H(4) (3), 2-iPrC(6)H(4) (4)) were prepared by reaction of [Cu(NCMe)(4)]BF4 with two equivalents of the corresponding Ar-BIAN ligands, in dichloromethane, while the mono-chelated complexes of the type [Cu(Ar-BIAN)L2]BF4 (where Ar = 2,6-iPr(2)C(6)H(3), L = PhCN (6); Ar = 4-iPrC(6)H(4), L = PPh3 (7)) were readily accessible by treatment of [Cu(NCR)(4)]BF4 (R = Me, Ph) with one equivalent of the corresponding Ar-BIAN ligands in the absence or presence of two equivalents of PPh3, in the same solvent. The structures of complexes 3, 4, 6 and 7 were obtained by single crystal X-ray diffraction, showing distorted tetrahedral geometries around the copper centres in all cases. The electrochemical studies of these complexes and of the already reported [Cu(2,4,6-Me3C6H2-BIAN)(2)]BF4 (2) and [Cu(2,6-iPr(2)C(6)H(3)BIAN)(NCMe) 2] (5), demonstrated that the bis-chelated complexes 1-4 undergo a reversible one-electron reduction or oxidation processes on copper, while the mono-chelated complexes 5-7 show a partially reversible oxidation and an irreversible reduction feature. Both kinds of (Ar-BIAN) copper(I) complexes are active catalysts for the copper(I)-catalysed azide-alkyne cycloaddition reaction (CuAAC). Complex 7, bearing PPh3 ligands, exhibits the highest catalytic activity, which is comparable with that of the typical CuSO4-sodium ascorbate catalyst system.
Original languageEnglish
Pages (from-to)5144-5154
Number of pages11
JournalDalton Transactions
Volume41
Issue number17
DOIs
Publication statusPublished - May 2012

Fingerprint

Dive into the research topics of 'Synthesis and structural characterisation of (aryl-BIAN)copper(I) complexes and their application as catalysts for the cycloaddition of azides and alkynes'. Together they form a unique fingerprint.

Cite this