Abstract
The azoreductase PpAzoR from Pseudomonas putida shows a broader specificity for decolourization of azo dyes than CotA-laccase from Bacillus subtilis. However, the final products of PpAzoR activity exhibited in most cases a 2 to 3-fold higher toxicity than intact dyes themselves. We show that addition of CotA-laccase to PpAzoR reaction mixtures lead to a significant drop in the final toxicity. A sequential enzymatic process was validated through the use of 18 representative azo dyes and three model wastewaters that mimic real dye-containing effluents. A heterologous Escherichia coil strain was successfully constructed co-expressing the genes coding for both PpAzoR and CotA. Whole-cell assays of recombinant strain for the treatment of model dye wastewater resulted in decolourization levels above 80% and detoxification levels up to 50%. The high attributes of this strain, make it a promising candidate for the biological treatment of industrial dye containing effluents.
Original language | Unknown |
---|---|
Pages (from-to) | 9852-9859 |
Journal | Bioresource Technology |
Volume | 102 |
Issue number | 21 |
DOIs | |
Publication status | Published - 1 Jan 2011 |