Supporting the Engineering of Multi-Fidelity Simulation Units With Simulation Goals

João Cambeiro, Julien Deantoni, Vasco Amaral

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

To conceive a CPS is a complex and multidisciplinary endeavour involving different stakeholders, potentially using a plethora of different languages to describe their views of the system at different levels of abstraction. Model-Driven Engineering comes, precisely, as a methodological approach to tackle the complexity of systems development with models as first-class citizens in the development process. The measure of realism of these models with respect to the real (sub)system is called fidelity. Usually, different models with different fidelity are then developed during the development process. Additionally, it is very common that the development process of CPS includes an incremental (and collaborative) use of simulations to study the behaviour emerging from the heterogeneous models of the system. Currently, the different models, with different fidelity, are managed in an ad hoc manner. Consequently, when a (Co)simulation is used to study a specific property of the system, the choice of the different models and their setup is made manually in a non-tractable way. In this paper we propose a structured new vision to CPS development, where the notion of simulation goal and multi-fidelity simulation unit are first-class citizens. The goal is to make a clear link between the system requirements, the system properties, the simulation goal and the multi-fidelity simulation unit. The outcome of this framework is a way to automatically determine the model at an adequate fidelity level suitable for answering a specific simulation goal.

Original languageEnglish
Title of host publicationCompanion Proceedings - 24th International Conference on Model-Driven Engineering Languages and Systems, MODELS-C 2021
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Pages317-321
Number of pages5
ISBN (Electronic)9781665424844
DOIs
Publication statusPublished - 2021
Event24th International Conference on Model-Driven Engineering Languages and Systems, MODELS-C 2021 - Virtual, Online, Japan
Duration: 10 Oct 202115 Oct 2021

Conference

Conference24th International Conference on Model-Driven Engineering Languages and Systems, MODELS-C 2021
Country/TerritoryJapan
CityVirtual, Online
Period10/10/2115/10/21

Keywords

  • Model
  • Model fidelity
  • Model-Based System Engineering
  • Simulation

Fingerprint

Dive into the research topics of 'Supporting the Engineering of Multi-Fidelity Simulation Units With Simulation Goals'. Together they form a unique fingerprint.

Cite this