TY - JOUR
T1 - 1H-NMR relaxometry, viscometry, and PFG NMR studies of magnetic and non-magnetic ionic liquids
AU - Portugal, Carla Alexandra Moreira
AU - Crespo, João Paulo Serejo Goulão
AU - Feio, António Gabriel Malagueta
N1 - Sem pdf conforme despacho.
PY - 2013/1/1
Y1 - 2013/1/1
N2 - A study is presented of the molecular dynamics and of the viscosity in pure [Aliquat][Cl] ionic liquid and in a mixture of [Aliquat][Cl] with 1% (v/v) of [Aliquat][FeCl4]. The 1H spin-lattice relaxation rate, R1, was measured by NMR relaxometry between 8 and 300 MHz. In addition, the translation self-diffusion, D, was measured by pulse field gradient NMR. The ILs' viscosity was measured as a function of an applied magnetic field, B, and it was found that the IL mixture's viscosity decreased with increasing B, whereas the [Aliquat][Cl] viscosity is independent of B. All experimental results were analyzed taking into account the viscosity's magnetic field dependence, assuming a modified Stokes-Einstein diffusion/viscosity relation. The main difference between the relaxation mechanisms responsible for R1 in the two IL systems is related to the additional paramagnetic relaxation contribution associated with the 1H spins-[FeCl4] paramagnetic moments' interactions. Cross-relaxation cusps in the R1 dispersion, associated with 35Cl and 1H nuclear spins in the IL systems, were detected. The R1 model considered was successfully fitted to the experimental results, and it was possible to estimate the value of D at zero field in the case of the IL mixture which was consistent with the values of D measured at 7 and 14.1 T and with the magnetic field dependence estimated from the viscosity measurements. It was observed that a small concentration of [Aliquat][FeCl4] in the [Aliquat][Cl] was enough to produce a "superparamagnetic"-like effect and to change the IL mixture's molecular dynamics and viscosity and to allow for their control with an external magnetic field.
AB - A study is presented of the molecular dynamics and of the viscosity in pure [Aliquat][Cl] ionic liquid and in a mixture of [Aliquat][Cl] with 1% (v/v) of [Aliquat][FeCl4]. The 1H spin-lattice relaxation rate, R1, was measured by NMR relaxometry between 8 and 300 MHz. In addition, the translation self-diffusion, D, was measured by pulse field gradient NMR. The ILs' viscosity was measured as a function of an applied magnetic field, B, and it was found that the IL mixture's viscosity decreased with increasing B, whereas the [Aliquat][Cl] viscosity is independent of B. All experimental results were analyzed taking into account the viscosity's magnetic field dependence, assuming a modified Stokes-Einstein diffusion/viscosity relation. The main difference between the relaxation mechanisms responsible for R1 in the two IL systems is related to the additional paramagnetic relaxation contribution associated with the 1H spins-[FeCl4] paramagnetic moments' interactions. Cross-relaxation cusps in the R1 dispersion, associated with 35Cl and 1H nuclear spins in the IL systems, were detected. The R1 model considered was successfully fitted to the experimental results, and it was possible to estimate the value of D at zero field in the case of the IL mixture which was consistent with the values of D measured at 7 and 14.1 T and with the magnetic field dependence estimated from the viscosity measurements. It was observed that a small concentration of [Aliquat][FeCl4] in the [Aliquat][Cl] was enough to produce a "superparamagnetic"-like effect and to change the IL mixture's molecular dynamics and viscosity and to allow for their control with an external magnetic field.
KW - RESONANCE
KW - DIFFUSION
KW - FIELD
KW - RELAXATION DISPERSION
U2 - 10.1021/jp4078536
DO - 10.1021/jp4078536
M3 - Article
C2 - 23972145
SN - 1520-6106
VL - 117
SP - 11877
EP - 11884
JO - Journal of Physical Chemistry B
JF - Journal of Physical Chemistry B
IS - 39
ER -