Structural characterisation of NiTi thin film shape memory alloys

Francisco M.Braz Fernandes, Rui Martins, M. Teresa Nogueira, Rui J.C. Silva, Patrícia J. Nunes, Daniel Costa, Isabel Ferreira, Rodrigo Martins

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)


Currently, microactuators are being developed using shape memory alloys (SMAs), which allow simple design geometries and provide large work outputs in restricted space. Several techniques have been used to produce NiTi shape memory alloy thin films, but from the practical point of view, only the sputter deposition method has succeeded so far. Vacuum evaporation of NiTi binary alloy entails the potential problem of the evaporation rates of each component not being the same due to differences in vapour pressure. Aiming to study the possible applications of SMAs to microfabrication, NiTi thin films were produced at CENIMAT by sputter and vacuum evaporation using raw materials from different sources. The films were analysed by differential scanning calorimetry (DSC) and X-ray diffraction (XRD) at room temperature, as well as in situ high temperature, in order to characterise the temperature ranges at which the different structural transformations occur.

Original languageEnglish
Pages (from-to)55-58
Number of pages4
JournalSensors and Actuators A: Physical
Issue number1-2
Publication statusPublished - 30 Apr 2002


  • "Smart" materials
  • Shape memory effect
  • Thin films


Dive into the research topics of 'Structural characterisation of NiTi thin film shape memory alloys'. Together they form a unique fingerprint.

Cite this