Stator winding short-circuit fault diagnosis in induction motors using random forest

Tiago Dos Santos, Fernando J.T.E. Ferreira, Joao Moura Pires, Carlos Damasio

Research output: Chapter in Book/Report/Conference proceedingConference contribution

9 Citations (Scopus)
Original languageEnglish
Title of host publication2017 IEEE International Electric Machines and Drives Conference, IEMDC 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)978-1-5090-4281-4
DOIs
Publication statusPublished - 3 Aug 2017
Event2017 IEEE International Electric Machines and Drives Conference, IEMDC 2017 - Miami, United States
Duration: 21 May 201724 May 2017

Conference

Conference2017 IEEE International Electric Machines and Drives Conference, IEMDC 2017
CountryUnited States
CityMiami
Period21/05/1724/05/17

Keywords

  • classification
  • fault diagnosis
  • induction motor
  • inter-Turn short-circuit
  • machine learning
  • PCA
  • predictive maintenance
  • random forest
  • stator winding

Fingerprint Dive into the research topics of 'Stator winding short-circuit fault diagnosis in induction motors using random forest'. Together they form a unique fingerprint.

Cite this