3 Downloads (Pure)

Abstract

Indium oxide (In2O3)-based transparent conducting oxides (TCOs) have been widely used and studied for a variety of applications, such as optoelectronic devices. However, some of the more promising dopants (zirconium, hafnium, and tantalum) for this oxide have not received much attention, as studies have mainly focused on tin and zinc, and even fewer have been explored by solution processes. This work focuses on developing solution-combustion-processed hafnium (Hf)-doped In2O3 thin films and evaluating different annealing parameters on TCO’s properties using a low environmental impact solvent. Optimized TCOs were achieved for 0.5 M% Hf-doped In2O3 when produced at 400 °C, showing high transparency in the visible range of the spectrum, a bulk resistivity of 5.73 × 10−2 Ω.cm, a mobility of 6.65 cm2/V.s, and a carrier concentration of 1.72 × 1019 cm−3. Then, these results were improved by using rapid thermal annealing (RTA) for 10 min at 600 °C, reaching a bulk resistivity of 3.95 × 10−3 Ω.cm, a mobility of 21 cm2/V.s, and a carrier concentration of 7.98 × 1019 cm−3, in air. The present work brings solution-based TCOs a step closer to low-cost optoelectronic applications.

Original languageEnglish
Article number2167
Number of pages14
JournalNanomaterials
Volume12
Issue number13
DOIs
Publication statusPublished - 23 Jun 2022

Keywords

  • hafnium dopant
  • indium oxide
  • rapid thermal annealing (RTA)
  • solution combustion synthesis
  • transparent conducting oxide (TCO)

Fingerprint

Dive into the research topics of 'Solution Combustion Synthesis of Hafnium-Doped Indium Oxide Thin Films for Transparent Conductors'. Together they form a unique fingerprint.

Cite this