TY - CHAP
T1 - Solution Combustion Synthesis: Applications in Oxide Electronics
T2 - Developments in Combustion Technology
AU - Branquinho, Rita
AU - Santa, Ana
AU - Carlos, Emanuel
AU - Salgueiro, Daniela
AU - Barquinha, Pedro Miguel Cândido
AU - Martins, Rodrigo Ferrão de Paiva
AU - Fortunato, Elvira Maria Correia
N1 - Sem PDF.
This work was partly funded by FEDER funds through the COMPETE 2020 Programme and National Funds through FCT—Portuguese Foundation for Science and Technology under the projects POCI-01-0145-FEDER-007688, Reference UID/CTM/50025 and EXCL/CTM-NAN/0201/2012; European Community FP7 2007-2013 project i-FLEXIS Grant Agreement n. 611070. D. Salgueiro acknowledges FCT-MEC for doctoral grant SFRH/BD/110427/2015
PY - 2016/10/5
Y1 - 2016/10/5
N2 - Oxide-based electronics have been well established as an alternative to silicon technology; however, typical processing requires complex, high-vacuum equipment, which is a major drawback, particularly when targeting low-cost applications. The possibility to deposit the materials by low-cost techniques such as inkjet printing has drawn tremendous interest in solution processible materials for electronic applications; however, high processing temperatures still required. To overcome this issue, solution combustion synthesis has been recently pursued. Taking advantage of the exothermic nature of the reaction as a source of energy for localized heating, the precursor solutions can be converted into oxides at lower process temperatures. Theoretically, this can be applied to any metal ions to produce the desired oxide, opening unlimited possibilities to materials’ composition and combinations. Solution combustion synthesis has been applied for the production of semiconductor thin films based on ZnO, In2O3, SnO2 and combinations of these oxides, and also for high κ dielectrics (Al2O3). All of which are required for numerous electronic devices and applications such as fully oxide-based thin-film transistors (TFTs). The properties of produced thin films are highly dependent on the precursor solution characteristics; hence, the influence of several processing parameters; organic fuel, solvent and annealing temperature was studied. Although precursor solution degradation/oxide formation mechanisms are not yet fully understood, particularly for thin films, we demonstrate that high-performance devices are obtained with combustion solution-based metal oxide thin films. The results clearly show that solution combustion synthesis is becoming one of the most promising methods for low-temperature flexible electronics.
AB - Oxide-based electronics have been well established as an alternative to silicon technology; however, typical processing requires complex, high-vacuum equipment, which is a major drawback, particularly when targeting low-cost applications. The possibility to deposit the materials by low-cost techniques such as inkjet printing has drawn tremendous interest in solution processible materials for electronic applications; however, high processing temperatures still required. To overcome this issue, solution combustion synthesis has been recently pursued. Taking advantage of the exothermic nature of the reaction as a source of energy for localized heating, the precursor solutions can be converted into oxides at lower process temperatures. Theoretically, this can be applied to any metal ions to produce the desired oxide, opening unlimited possibilities to materials’ composition and combinations. Solution combustion synthesis has been applied for the production of semiconductor thin films based on ZnO, In2O3, SnO2 and combinations of these oxides, and also for high κ dielectrics (Al2O3). All of which are required for numerous electronic devices and applications such as fully oxide-based thin-film transistors (TFTs). The properties of produced thin films are highly dependent on the precursor solution characteristics; hence, the influence of several processing parameters; organic fuel, solvent and annealing temperature was studied. Although precursor solution degradation/oxide formation mechanisms are not yet fully understood, particularly for thin films, we demonstrate that high-performance devices are obtained with combustion solution-based metal oxide thin films. The results clearly show that solution combustion synthesis is becoming one of the most promising methods for low-temperature flexible electronics.
KW - solution processing
KW - combustion synthesis
KW - environmentally friendly
KW - metal oxide materials
KW - thin-film transistors
KW - semiconductor oxides
KW - dielectric oxides
M3 - Chapter
SN - 978-953-51-2668-3
SP - 397
EP - 417
BT - Solution Combustion Synthesis
PB - InTech
CY - London
ER -