TY - JOUR
T1 - SNP Detection in Pinus pinaster Transcriptome and Association with Resistance to Pinewood Nematode
AU - Modesto, Inês
AU - Inácio, Vera
AU - Novikova, Polina
AU - Agronomia, Instituto
AU - Van de Peer, Yves
AU - Miguel, Célia M.
N1 - Funding Information:
Funding: This work was supported by Fundação para a Ciência e a Tecnologia, I.P. (FCT/MCTES), through Grants GREEN-it (UID/Multi/04551/2013), BioISI (UIDB/04046/2020 and UIDP/04046/2020) and the doctoral fellowship SFRH/BD/111687/2015 (to I.M.). Support was also provided by FCT/MCTES through national funds (PIDDAC) and co-financed by Fundo Europeu de Desen-volvimento Regional (FEDER) of the EU, through Programa Operacional Regional de Lisboa do Portugal 2020 or other programs that may succeed—PTDC/BAA-MOL/28379/2017, LISBOA-01-0145-FEDER-028379.
Funding Information:
This work was supported by Fundação para a Ciência e a Tecnologia, I.P. (FCT/MCTES), through Grants GREEN-it (UID/Multi/04551/2013), BioISI (UIDB/04046/2020 and UIDP/04046/2020) and the doctoral fellowship SFRH/BD/111687/2015 (to I.M.). Support was also provided by FCT/MCTES through national funds (PIDDAC) and co-financed by Fundo Europeu de Desenvolvimento Regional (FEDER) of the EU, through Programa Operacional Regional de Lisboa do Portugal 2020 or other programs that may succeed—PTDC/BAA-MOL/28379/2017, LISBOA-01-0145-FEDER-028379.We thank Maria L. Inácio (INIAV) for providing the nematode cultures and Hugo Matias (ITQB NOVA) for all the technical support in the greenhouse.
Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/6
Y1 - 2022/6
N2 - Pinewood nematode (PWN, Bursaphelenchus xylophilus) is the causal agent of pine wilt disease (PWD), which severely affects Pinus pinaster stands in southwestern Europe. Despite the high susceptibility of P. pinaster, individuals of selected half-sib families have shown genetic variability in survival after PWN inoculation, indicating that breeding for resistance can be a valuable strategy to control PWD. In this work, RNA-seq data from susceptible and resistant plants inoculated with PWN were used for SNP discovery and analysis. A total of 186,506 SNPs were identified, of which 31 were highly differentiated between resistant and susceptible plants, including SNPs in genes involved in cell wall lignification, a process previously linked to PWN resistance. Fifteen of these SNPs were selected for validation through Sanger sequencing and 14 were validated. To evaluate SNP-phenotype associations, 40 half-sib plants were genotyped for six validated SNPs. Associations with phenotype after PWN inoculation were found for two SNPs in two different genes (MEE12 and PCMP-E91), as well as two haplotypes of HIPP41, although significance was not maintained following Bonferroni correction. SNPs here detected may be useful for the development of molecular markers for PWD resistance and should be further investigated in future association studies.
AB - Pinewood nematode (PWN, Bursaphelenchus xylophilus) is the causal agent of pine wilt disease (PWD), which severely affects Pinus pinaster stands in southwestern Europe. Despite the high susceptibility of P. pinaster, individuals of selected half-sib families have shown genetic variability in survival after PWN inoculation, indicating that breeding for resistance can be a valuable strategy to control PWD. In this work, RNA-seq data from susceptible and resistant plants inoculated with PWN were used for SNP discovery and analysis. A total of 186,506 SNPs were identified, of which 31 were highly differentiated between resistant and susceptible plants, including SNPs in genes involved in cell wall lignification, a process previously linked to PWN resistance. Fifteen of these SNPs were selected for validation through Sanger sequencing and 14 were validated. To evaluate SNP-phenotype associations, 40 half-sib plants were genotyped for six validated SNPs. Associations with phenotype after PWN inoculation were found for two SNPs in two different genes (MEE12 and PCMP-E91), as well as two haplotypes of HIPP41, although significance was not maintained following Bonferroni correction. SNPs here detected may be useful for the development of molecular markers for PWD resistance and should be further investigated in future association studies.
KW - maritime pine
KW - molecular markers
KW - pine wilt disease
KW - RNA-seq
KW - single nucleotide polymorphism
UR - http://www.scopus.com/inward/record.url?scp=85132816783&partnerID=8YFLogxK
U2 - 10.3390/f13060946
DO - 10.3390/f13060946
M3 - Article
AN - SCOPUS:85132816783
SN - 1999-4907
VL - 13
JO - Forests
JF - Forests
IS - 6
M1 - 946
ER -