TY - JOUR
T1 - Shallow water fish display low phenotypic plasticity to ocean warming and extreme weather events regardless of previous thermal history
AU - Missionário, Madalena
AU - Almeida, Célia
AU - Fernandes, Joana Filipa
AU - Vinagre, Catarina
AU - Madeira, Carolina
AU - Madeira, Diana
N1 - Funding Information:
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/LA%2FP%2F0101%2F2020/PT#
info:eu-repo/grantAgreement/FCT/Concurso para Financiamento de Projetos de Investigação Científica e Desenvolvimento Tecnológico em Todos os Domínios Científicos - 2020/PTDC%2FBIA-BMA%2F1494%2F2020/PT#
info:eu-repo/grantAgreement/FCT/Concurso para Atribuição do Estatuto e Financiamento de Laboratórios Associados (LA)/LA%2FP%2F0094%2F2020/PT#
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04378%2F2020/PT#
info:eu-repo/grantAgreement/FCT/Concurso para Atribuição do Estatuto e Financiamento de Laboratórios Associados (LA)/LA%2FP%2F0140%2F2020/PT#
info:eu-repo/grantAgreement/FCT/Concurso de avaliação no âmbito do Programa Plurianual de Financiamento de Unidades de I&D (2017%2F2018) - Financiamento Programático/UIDP%2F50017%2F2020/PT#
info:eu-repo/grantAgreement/FCT/Concurso de avaliação no âmbito do Programa Plurianual de Financiamento de Unidades de I&D (2017%2F2018) - Financiamento Base/UIDB%2F50017%2F2020/PT#
info:eu-repo/grantAgreement/FCT/Concurso para Atribuição do Estatuto e Financiamento de Laboratórios Associados (LA)/LA%2FP%2F0094%2F2020/PT#
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04326%2F2020/PT#
info:eu-repo/grantAgreement/FCT/Concurso de avaliação no âmbito do Programa Plurianual de Financiamento de Unidades de I&D (2017%2F2018) - Financiamento Programático/UIDP%2F04326%2F2020/PT#
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/LA%2FP%2F0101%2F2020/PT#
info:eu-repo/grantAgreement/FCT/Concurso de avaliação no âmbito do Programa Plurianual de Financiamento de Unidades de I&D (2017%2F2018) - Financiamento Base/UIDB%2F04292%2F2020/PT#
info:eu-repo/grantAgreement/FCT//2022.10575.BD/PT#
info:eu-repo/grantAgreement/FCT/OE/2021.04675.BD/PT#
info:eu-repo/grantAgreement/FCT/CEEC IND 2018/CEECIND%2F01526%2F2018%2FCP1564%2FCT0008/PT#
info:eu-repo/grantAgreement/FCT/CEEC IND5ed/2022.00153.CEECIND%2FCP1720%2FCT0016/PT#
AQUATROPHYS (2021.09718. CBM ), funded by the Portuguese Foundation for Science and Technology (FCT).
© 2024 The Authors. Published by Elsevier Ltd.
PY - 2024/10/1
Y1 - 2024/10/1
N2 - Shallow water environments have long been recognized by scientists as sentinels for climate change. By analysing the impacts of ocean warming and marine heatwaves (MHW) in species from these areas, we can estimate their plasticity and hence vulnerability to thermal challenges. Pomatoschistus microps is a benthic intertidal fish species inhabiting coastal lagoons where temperature fluctuations are common. Here, we tested the effects of “Present” and “Future summer” scenarios (22 °C and 25 °C) and their respective heatwaves (27 °C and 30 °C) versus a “Control” scenario of 19 °C on warm (summer)- and cold (winter)- acclimatized fish. Then, we estimated phenotypic plasticity of critical thermal maximum (CTmax), oxygen consumption and cellular stress responses (CSR). Temperature seasonal variation and body weight (as proxy for body size) effects on fish thermal tolerance were also determined. Fish exposed to higher temperature treatments exhibited higher thermal tolerance, with this pattern being consistent for both warm- and cold-acclimatized fish. However, this difference was subtle (<4.6 %), suggesting a low capacity for acclimation. Nonetheless, warm-acclimatized fish (collected in summer) displayed significantly higher CTmax than cold-acclimatized fish (collected in winter), indicating that CTmax is influenced by seasonal thermal variation. Weight also represents a constraint factor for P. microps thermal tolerance, as heavier animals displayed lower CTmax. No alterations in O2 consumption, neither in CSR biomarkers were detected across temperature treatments, suggesting that fish were otherwise relatively insensitive to thermal fluctuations, independently of thermal history, within the thermal scenarios tested. Overall, the studied population of P. microps seems well adapted to temperature variations in their natural environment, exhibiting a large thermal safety margin (average of 11.02 °C).
AB - Shallow water environments have long been recognized by scientists as sentinels for climate change. By analysing the impacts of ocean warming and marine heatwaves (MHW) in species from these areas, we can estimate their plasticity and hence vulnerability to thermal challenges. Pomatoschistus microps is a benthic intertidal fish species inhabiting coastal lagoons where temperature fluctuations are common. Here, we tested the effects of “Present” and “Future summer” scenarios (22 °C and 25 °C) and their respective heatwaves (27 °C and 30 °C) versus a “Control” scenario of 19 °C on warm (summer)- and cold (winter)- acclimatized fish. Then, we estimated phenotypic plasticity of critical thermal maximum (CTmax), oxygen consumption and cellular stress responses (CSR). Temperature seasonal variation and body weight (as proxy for body size) effects on fish thermal tolerance were also determined. Fish exposed to higher temperature treatments exhibited higher thermal tolerance, with this pattern being consistent for both warm- and cold-acclimatized fish. However, this difference was subtle (<4.6 %), suggesting a low capacity for acclimation. Nonetheless, warm-acclimatized fish (collected in summer) displayed significantly higher CTmax than cold-acclimatized fish (collected in winter), indicating that CTmax is influenced by seasonal thermal variation. Weight also represents a constraint factor for P. microps thermal tolerance, as heavier animals displayed lower CTmax. No alterations in O2 consumption, neither in CSR biomarkers were detected across temperature treatments, suggesting that fish were otherwise relatively insensitive to thermal fluctuations, independently of thermal history, within the thermal scenarios tested. Overall, the studied population of P. microps seems well adapted to temperature variations in their natural environment, exhibiting a large thermal safety margin (average of 11.02 °C).
KW - Acclimation
KW - Fish
KW - Global warming
KW - Marine heatwaves
KW - Thermal tolerance
UR - http://www.scopus.com/inward/record.url?scp=85196644951&partnerID=8YFLogxK
U2 - 10.1016/j.ecss.2024.108849
DO - 10.1016/j.ecss.2024.108849
M3 - Article
AN - SCOPUS:85196644951
SN - 0272-7714
VL - 305
JO - Estuarine, Coastal and Shelf Science
JF - Estuarine, Coastal and Shelf Science
M1 - 108849
ER -