TY - JOUR
T1 - Sensitivity analysis of spatial autocorrelation using distinct geometrical settings
T2 - Guidelines for the quantitative geographer
AU - Rodrigues, António Manuel
AU - Tenedório, José António
N1 - UID/SOC/04647/2013
PY - 2016/1/1
Y1 - 2016/1/1
N2 - Inferences based on spatial analysis of areal data depend greatly on the method used to quantify the degree of proximity between spatial units-regions. These proximity measures are normally organized in the form of weights matrices, which are used to obtain statistics that take into account neighbourhood relations between agents. In any scientific field where the focus is on human behaviour, areal datasets are greatly relevant since this is the most common form of data collection (normally as count data). The method or schema used to divide a continuous spatial surface into sets of discrete units influences inferences about geographical and social phenomena, mainly because these units are neither homogeneous nor regular. This article tests the effect of different geometrical data aggregation schemas-administrative regions and hexagonal surface tessellation-on global spatial autocorrelation statistics. Two geographical variables are taken into account: scale (resolution) and form (regularity). This is achieved through the use of different aggregation levels and geometrical schemas. Five different datasets are used, all representing the distribution of resident population aggregated for two study areas, with the objective of consistently test the effect of different spatial aggregation schemas.
AB - Inferences based on spatial analysis of areal data depend greatly on the method used to quantify the degree of proximity between spatial units-regions. These proximity measures are normally organized in the form of weights matrices, which are used to obtain statistics that take into account neighbourhood relations between agents. In any scientific field where the focus is on human behaviour, areal datasets are greatly relevant since this is the most common form of data collection (normally as count data). The method or schema used to divide a continuous spatial surface into sets of discrete units influences inferences about geographical and social phenomena, mainly because these units are neither homogeneous nor regular. This article tests the effect of different geometrical data aggregation schemas-administrative regions and hexagonal surface tessellation-on global spatial autocorrelation statistics. Two geographical variables are taken into account: scale (resolution) and form (regularity). This is achieved through the use of different aggregation levels and geometrical schemas. Five different datasets are used, all representing the distribution of resident population aggregated for two study areas, with the objective of consistently test the effect of different spatial aggregation schemas.
KW - Monte Carlo Simulations
KW - Spatial Autocorrelation
KW - Spatial Weights Matrix
KW - Spill Over Effects
UR - http://www.scopus.com/inward/record.url?scp=84973598637&partnerID=8YFLogxK
UR - https://apps.webofknowledge.com/InboundService.do?customersID=RRC&mode=FullRecord&IsProductCode=Yes&product=WOS&Init=Yes&Func=Frame&DestFail=http%3A%2F%2Fwww.webofknowledge.com&action=retrieve&SrcApp=RRC&SrcAuth=RRC&SID=D3b9C59xGJfu8FBO9CF&UT=WOS%3A000387905500006
U2 - 10.4018/IJAEIS.2016010105
DO - 10.4018/IJAEIS.2016010105
M3 - Article
AN - SCOPUS:84973598637
VL - 7
SP - 65
EP - 77
JO - International Journal of Agricultural and Environmental Information Systems (IJAEIS)
JF - International Journal of Agricultural and Environmental Information Systems (IJAEIS)
SN - 1947-3192
IS - 1
ER -