Self-interference in Multi-tap Channels for Full-Duplex Wireless Systems

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

53 Downloads (Pure)

Abstract

Residual self-interference (SI) is primarily a key challenge when designing In-Band Full-duplex (IBFDX) wireless systems. Channel estimation errors are one of the major causes of residual SI. Consequently, a deeper understanding of the impact of the channel effects on the residual SI becomes indispensable. In this paper, we investigate the influence of multiple taps on the residual SI power of IBFDX systems. We first formulate the effect of having independent taps on the residual SI power mathematically. The derivations take into account the amount of interference cancellation on each tap by considering phase and amplitude estimation coefficients. We conclude that the increase in the number of taps always leads to an additive effect of the residual power. Such findings are shown mathematically and also reported in different results obtained by simulation. Finally, we compare the distribution of the residual SI power with different known distributions, concluding that Weibull and Gamma distributions are the closest ones in terms of accuracy. In-Band Full-Duplex communication Residual self-interference Independent fading taps channel.

Original languageEnglish
Title of host publicationTechnological Innovation for Life Improvement - 11th IFIP WG 5.5/SOCOLNET Advanced Doctoral Conference on Computing, Electrical and Industrial Systems, DoCEIS 2020, Proceedings
EditorsLuis M. Camarinha-Matos, Nastaran Farhadi, Fábio Lopes, Helena Pereira
Place of PublicationCham
PublisherSpringer
Pages147-155
Number of pages9
ISBN (Electronic)978-3-030-45124-0
ISBN (Print)978-3-030-45123-3
DOIs
Publication statusPublished - 2020
Event11th Advanced Doctoral Conference on Computing, Electrical and Industrial Systems, DoCEIS 2020 - Costa de Caparica, Portugal
Duration: 1 Jul 20203 Jul 2020

Publication series

NameIFIP Advances in Information and Communication Technology
PublisherSpringer
Volume577
ISSN (Print)1868-4238
ISSN (Electronic)1868-422X

Conference

Conference11th Advanced Doctoral Conference on Computing, Electrical and Industrial Systems, DoCEIS 2020
Country/TerritoryPortugal
CityCosta de Caparica
Period1/07/203/07/20

Keywords

  • In-Band Full-Duplex communication
  • Independent fading taps channel
  • Residual self-interference

Fingerprint

Dive into the research topics of 'Self-interference in Multi-tap Channels for Full-Duplex Wireless Systems'. Together they form a unique fingerprint.

Cite this