TY - JOUR
T1 - Screening of natural Wolbachia infection in mosquitoes (Diptera: Culicidae) from the Cape Verde islands
AU - da Moura, Aires Januário Fernandes
AU - Valadas, Vera
AU - Da Veiga Leal, Silvania
AU - Montalvo Sabino, Eddyson
AU - Sousa, Carla A.
AU - Pinto, João
N1 - Funding Information:
We are grateful to the National Institute of Public Health for the laboratory support in Cape Verde, and to technicians from the Ministry of Health for their assistance in field work. We would like to thank Prof. Paulo Almeida for providing DNA controls of Cx. pipiens and Cx. quinquefasciatus used in the species identification PCR assay.
Funding Information:
This work was funded by national funds through FCT—Fundação para a Ciência e Tecnologia, I.P., within the framework of the project ARBOMONITOR (PTDC/BIA-OUT/29477/2017. Aires da Moura was funded by the Ph.D. fellowship program of Camões I.P.
Publisher Copyright:
© 2023, The Author(s).
PY - 2023/12
Y1 - 2023/12
N2 - Background: Wolbachia pipientis is an endosymbiont bacterium that induces cytoplasmic incompatibility and inhibits arboviral replication in mosquitoes. This study aimed to assess Wolbachia prevalence and genetic diversity in different mosquito species from Cape Verde. Methods: Mosquitoes were collected on six islands of Cape Verde and identified to species using morphological keys and PCR-based assays. Wolbachia was detected by amplifying a fragment of the surface protein gene (wsp). Multilocus sequence typing (MLST) was performed with five housekeeping genes (coxA, gatB, ftsZ, hcpA, and fbpA) and the wsp hypervariable region (HVR) for strain identification. Identification of wPip groups (wPip-I to wPip-V) was performed using PCR–restriction fragment length polymorphism (RFLP) assay on the ankyrin domain gene pk1. Results: Nine mosquito species were collected, including the major vectors Aedes aegypti, Anopheles arabiensis, Culex pipiens sensu stricto, and Culex quinquefasciatus. Wolbachia was only detected in Cx. pipiens s.s. (100% prevalence), Cx. quinquefasciatus (98.3%), Cx. pipiens/quinquefasciatus hybrids (100%), and Culex tigripes (100%). Based on the results of MLST and wsp hypervariable region typing, Wolbachia from the Cx. pipiens complex was assigned to sequence type 9, wPip clade, and supergroup B. PCR/RFLP analysis revealed three wPip groups in Cape Verde, namely wPip-II, wPip-III, and wPip-IV. wPip-IV was the most prevalent, while wPip-II and wPip-III were found only on Maio and Fogo islands. Wolbachia detected in Cx. tigripes belongs to supergroup B, with no attributed MLST profile, indicating a new strain of Wolbachia in this mosquito species. Conclusions: A high prevalence and diversity of Wolbachia was found in species from the Cx. pipiens complex. This diversity may be related to the mosquito's colonization history on the Cape Verde islands. To the best of our knowledge, this is the first study to detect Wolbachia in Cx. tigripes, which may provide an additional opportunity for biocontrol initiatives.
AB - Background: Wolbachia pipientis is an endosymbiont bacterium that induces cytoplasmic incompatibility and inhibits arboviral replication in mosquitoes. This study aimed to assess Wolbachia prevalence and genetic diversity in different mosquito species from Cape Verde. Methods: Mosquitoes were collected on six islands of Cape Verde and identified to species using morphological keys and PCR-based assays. Wolbachia was detected by amplifying a fragment of the surface protein gene (wsp). Multilocus sequence typing (MLST) was performed with five housekeeping genes (coxA, gatB, ftsZ, hcpA, and fbpA) and the wsp hypervariable region (HVR) for strain identification. Identification of wPip groups (wPip-I to wPip-V) was performed using PCR–restriction fragment length polymorphism (RFLP) assay on the ankyrin domain gene pk1. Results: Nine mosquito species were collected, including the major vectors Aedes aegypti, Anopheles arabiensis, Culex pipiens sensu stricto, and Culex quinquefasciatus. Wolbachia was only detected in Cx. pipiens s.s. (100% prevalence), Cx. quinquefasciatus (98.3%), Cx. pipiens/quinquefasciatus hybrids (100%), and Culex tigripes (100%). Based on the results of MLST and wsp hypervariable region typing, Wolbachia from the Cx. pipiens complex was assigned to sequence type 9, wPip clade, and supergroup B. PCR/RFLP analysis revealed three wPip groups in Cape Verde, namely wPip-II, wPip-III, and wPip-IV. wPip-IV was the most prevalent, while wPip-II and wPip-III were found only on Maio and Fogo islands. Wolbachia detected in Cx. tigripes belongs to supergroup B, with no attributed MLST profile, indicating a new strain of Wolbachia in this mosquito species. Conclusions: A high prevalence and diversity of Wolbachia was found in species from the Cx. pipiens complex. This diversity may be related to the mosquito's colonization history on the Cape Verde islands. To the best of our knowledge, this is the first study to detect Wolbachia in Cx. tigripes, which may provide an additional opportunity for biocontrol initiatives.
KW - Cape Verde
KW - Culex pipiens
KW - Culex tigripes
KW - Genotyping
KW - Mosquitoes
KW - Wolbachia
UR - http://www.scopus.com/inward/record.url?scp=85153806060&partnerID=8YFLogxK
U2 - 10.1186/s13071-023-05745-w
DO - 10.1186/s13071-023-05745-w
M3 - Article
C2 - 37098535
AN - SCOPUS:85153806060
SN - 1756-3305
VL - 16
JO - Parasites and Vectors
JF - Parasites and Vectors
IS - 1
M1 - 142
ER -