TY - JOUR
T1 - Scalable Process for High-Yield Production of PfCyRPA Using Insect Cells for Inclusion in a Malaria Virosome-Based Vaccine Candidate
AU - Fernandes, Bárbara
AU - Sousa, Marcos
AU - Castro, Rute
AU - Schäfer, Anja
AU - Hauser, Julia
AU - Schulze, Kai
AU - Amacker, Mario
AU - Tamborrini, Marco
AU - Pluschke, Gerd
AU - Alves, Paula M.
AU - Fleury, Sylvain
AU - Roldão, António
N1 - Funding Information:
The authors acknowledge support the funding from European Union’s Horizon 2020 research and innovation program under grant agreement No. 730964 (project “TRANSVAC2”) and No. 951668 (project “TRANSVAC-DS”), as well as funding from INTERFACE Programme, through the Innovation, Technology, and Circular Economy Fund (FITEC), iNOVA4Health–UIDB/04462/2020 and UIDP/04462/2020, a program financially supported by Fundação para a Ciência e Tecnologia (FCT)/Ministério da Ciência, Tecnologia e Ensino Superior, and by FCT through the initiatives “Investigador FCT” Program (IF/01704/2014), Exploratory Research and Development Projects (EXPL/BBB-BIO/1541/2013 and IF/01704/2014/CP1229/CT0001), and PhD fellowship (SFRH/BD/138937/2018). Work at Swiss TPH was funded by Fondation Botnar (grant 6349).
Publisher Copyright:
Copyright © 2022 Fernandes, Sousa, Castro, Schäfer, Hauser, Schulze, Amacker, Tamborrini, Pluschke, Alves, Fleury and Roldão.
PY - 2022/5/20
Y1 - 2022/5/20
N2 - Plasmodium falciparum cysteine-rich protective antigen (PfCyRPA) has been identified as a promising blood-stage candidate antigen to include in a broadly cross-reactive malaria vaccine. In the last couple of decades, substantial effort has been committed to the development of scalable cost-effective, robust, and high-yield PfCyRPA production processes. Despite insect cells being a suitable expression system due to their track record for protein production (including vaccine antigens), these are yet to be explored to produce this antigen. In this study, different insect cell lines, culture conditions (baculovirus infection strategy, supplementation schemes, culture temperature modulation), and purification strategies (affinity tags) were explored aiming to develop a scalable, high-yield, and high-quality PfCyRPA for inclusion in a virosome-based malaria vaccine candidate. Supplements with antioxidants improved PfCyRPA volumetric titers by 50% when added at the time of infection. In addition, from three different affinity tags (6x-His, 4x-His, and C-tag) evaluated, the 4x-His affinity tag was the one leading to the highest PfCyRPA purification recovery yields (61%) and production yield (26 mg/L vs. 21 mg/L and 13 mg/L for 6x-His and C-tag, respectively). Noteworthy, PfCyRPA expressed using High Five cells did not show differences in protein quality or stability when compared to its human HEK293 cell counterpart. When formulated in a lipid-based virosome nanoparticle, immunized rabbits developed functional anti-PfCyRPA antibodies that impeded the multiplication of P. falciparum in vitro. This work demonstrates the potential of using IC-BEVS as a qualified platform to produce functional recombinant PfCyRPA protein with the added benefit of being a non-human expression system with short bioprocessing times and high expression levels.
AB - Plasmodium falciparum cysteine-rich protective antigen (PfCyRPA) has been identified as a promising blood-stage candidate antigen to include in a broadly cross-reactive malaria vaccine. In the last couple of decades, substantial effort has been committed to the development of scalable cost-effective, robust, and high-yield PfCyRPA production processes. Despite insect cells being a suitable expression system due to their track record for protein production (including vaccine antigens), these are yet to be explored to produce this antigen. In this study, different insect cell lines, culture conditions (baculovirus infection strategy, supplementation schemes, culture temperature modulation), and purification strategies (affinity tags) were explored aiming to develop a scalable, high-yield, and high-quality PfCyRPA for inclusion in a virosome-based malaria vaccine candidate. Supplements with antioxidants improved PfCyRPA volumetric titers by 50% when added at the time of infection. In addition, from three different affinity tags (6x-His, 4x-His, and C-tag) evaluated, the 4x-His affinity tag was the one leading to the highest PfCyRPA purification recovery yields (61%) and production yield (26 mg/L vs. 21 mg/L and 13 mg/L for 6x-His and C-tag, respectively). Noteworthy, PfCyRPA expressed using High Five cells did not show differences in protein quality or stability when compared to its human HEK293 cell counterpart. When formulated in a lipid-based virosome nanoparticle, immunized rabbits developed functional anti-PfCyRPA antibodies that impeded the multiplication of P. falciparum in vitro. This work demonstrates the potential of using IC-BEVS as a qualified platform to produce functional recombinant PfCyRPA protein with the added benefit of being a non-human expression system with short bioprocessing times and high expression levels.
KW - BEVS
KW - bioprocess engineering
KW - insect cells
KW - malaria vaccine
KW - PfCyRPA
UR - http://www.scopus.com/inward/record.url?scp=85131721025&partnerID=8YFLogxK
U2 - 10.3389/fbioe.2022.879078
DO - 10.3389/fbioe.2022.879078
M3 - Article
AN - SCOPUS:85131721025
SN - 2296-4185
VL - 10
JO - Frontiers in Bioengineering and Biotechnology
JF - Frontiers in Bioengineering and Biotechnology
M1 - 879078
ER -