Rubisco mutants of Chlamydomonas reinhardtii enhance photosynthetic hydrogen production

Research output: Contribution to journalArticle

28 Citations (Scopus)

Abstract

Molecular hydrogen (H-2) is an ideal fuel characterized by high enthalpy change and lack of greenhouse effects. This biofuel can be released by microalgae via reduction of protons to molecular hydrogen catalyzed by hydrogenases. The main competitor for the reducing power required by the hydrogenases is the Calvin cycle, and rubisco plays a key role therein. Engineered Chlamydomonas with reduced rubisco levels, activity and stability was used as the basis of this research effort aimed at increasing hydrogen production. Biochemical monitoring in such metabolically engineered mutant cells proceeded in Tris/acetate/phosphate culture medium with S-depletion or repletion, both under hypoxia. Photosynthetic activity, maximum photochemical efficiency, chlorophyll and protein levels were all measured. In addition, expression of rubisco, hydrogenase, D1 and Lhcb were investigated, and H-2 was quantified. At the beginning of the experiments, rubisco increased followed by intense degradation. Lhcb proteins exhibited monomeric isoforms during the first 24 to 48 h, and D1 displayed sensitivity under S-depletion. Rubisco mutants exhibited a significant decrease in O-2 evolution compared with the control. Although the S-depleted medium was much more suitable than its complete counterpart for H-2 production, hydrogen release was observed also in sealed S-repleted cultures of rubisco mutated cells under low-moderate light conditions. In particular, the rubisco mutant Y67A accounted for 10-15-fold higher hydrogen production than the wild type under the same conditions and also displayed divergent metabolic parameters. These results indicate that rubisco is a promising target for improving hydrogen production rates in engineered microalgae.
Original languageUnknown
Pages (from-to)5635-5643
JournalApplied Microbiology and Biotechnology
Volume97
Issue number12
DOIs
Publication statusPublished - 1 Jan 2013

Cite this

@article{cc408670466a460c84343ced313fa536,
title = "Rubisco mutants of Chlamydomonas reinhardtii enhance photosynthetic hydrogen production",
abstract = "Molecular hydrogen (H-2) is an ideal fuel characterized by high enthalpy change and lack of greenhouse effects. This biofuel can be released by microalgae via reduction of protons to molecular hydrogen catalyzed by hydrogenases. The main competitor for the reducing power required by the hydrogenases is the Calvin cycle, and rubisco plays a key role therein. Engineered Chlamydomonas with reduced rubisco levels, activity and stability was used as the basis of this research effort aimed at increasing hydrogen production. Biochemical monitoring in such metabolically engineered mutant cells proceeded in Tris/acetate/phosphate culture medium with S-depletion or repletion, both under hypoxia. Photosynthetic activity, maximum photochemical efficiency, chlorophyll and protein levels were all measured. In addition, expression of rubisco, hydrogenase, D1 and Lhcb were investigated, and H-2 was quantified. At the beginning of the experiments, rubisco increased followed by intense degradation. Lhcb proteins exhibited monomeric isoforms during the first 24 to 48 h, and D1 displayed sensitivity under S-depletion. Rubisco mutants exhibited a significant decrease in O-2 evolution compared with the control. Although the S-depleted medium was much more suitable than its complete counterpart for H-2 production, hydrogen release was observed also in sealed S-repleted cultures of rubisco mutated cells under low-moderate light conditions. In particular, the rubisco mutant Y67A accounted for 10-15-fold higher hydrogen production than the wild type under the same conditions and also displayed divergent metabolic parameters. These results indicate that rubisco is a promising target for improving hydrogen production rates in engineered microalgae.",
keywords = "Metabolic engineering, Biohydrogen, Rubisco, Chlamydomonas reinhardtii",
author = "Malcata, {Francisco Xavier}",
year = "2013",
month = "1",
day = "1",
doi = "10.1007/s00253-013-4920-z",
language = "Unknown",
volume = "97",
pages = "5635--5643",
journal = "Applied Microbiology and Biotechnology",
issn = "0175-7598",
publisher = "Springer Science Business Media",
number = "12",

}

Rubisco mutants of Chlamydomonas reinhardtii enhance photosynthetic hydrogen production. / Malcata, Francisco Xavier.

In: Applied Microbiology and Biotechnology, Vol. 97, No. 12, 01.01.2013, p. 5635-5643.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Rubisco mutants of Chlamydomonas reinhardtii enhance photosynthetic hydrogen production

AU - Malcata, Francisco Xavier

PY - 2013/1/1

Y1 - 2013/1/1

N2 - Molecular hydrogen (H-2) is an ideal fuel characterized by high enthalpy change and lack of greenhouse effects. This biofuel can be released by microalgae via reduction of protons to molecular hydrogen catalyzed by hydrogenases. The main competitor for the reducing power required by the hydrogenases is the Calvin cycle, and rubisco plays a key role therein. Engineered Chlamydomonas with reduced rubisco levels, activity and stability was used as the basis of this research effort aimed at increasing hydrogen production. Biochemical monitoring in such metabolically engineered mutant cells proceeded in Tris/acetate/phosphate culture medium with S-depletion or repletion, both under hypoxia. Photosynthetic activity, maximum photochemical efficiency, chlorophyll and protein levels were all measured. In addition, expression of rubisco, hydrogenase, D1 and Lhcb were investigated, and H-2 was quantified. At the beginning of the experiments, rubisco increased followed by intense degradation. Lhcb proteins exhibited monomeric isoforms during the first 24 to 48 h, and D1 displayed sensitivity under S-depletion. Rubisco mutants exhibited a significant decrease in O-2 evolution compared with the control. Although the S-depleted medium was much more suitable than its complete counterpart for H-2 production, hydrogen release was observed also in sealed S-repleted cultures of rubisco mutated cells under low-moderate light conditions. In particular, the rubisco mutant Y67A accounted for 10-15-fold higher hydrogen production than the wild type under the same conditions and also displayed divergent metabolic parameters. These results indicate that rubisco is a promising target for improving hydrogen production rates in engineered microalgae.

AB - Molecular hydrogen (H-2) is an ideal fuel characterized by high enthalpy change and lack of greenhouse effects. This biofuel can be released by microalgae via reduction of protons to molecular hydrogen catalyzed by hydrogenases. The main competitor for the reducing power required by the hydrogenases is the Calvin cycle, and rubisco plays a key role therein. Engineered Chlamydomonas with reduced rubisco levels, activity and stability was used as the basis of this research effort aimed at increasing hydrogen production. Biochemical monitoring in such metabolically engineered mutant cells proceeded in Tris/acetate/phosphate culture medium with S-depletion or repletion, both under hypoxia. Photosynthetic activity, maximum photochemical efficiency, chlorophyll and protein levels were all measured. In addition, expression of rubisco, hydrogenase, D1 and Lhcb were investigated, and H-2 was quantified. At the beginning of the experiments, rubisco increased followed by intense degradation. Lhcb proteins exhibited monomeric isoforms during the first 24 to 48 h, and D1 displayed sensitivity under S-depletion. Rubisco mutants exhibited a significant decrease in O-2 evolution compared with the control. Although the S-depleted medium was much more suitable than its complete counterpart for H-2 production, hydrogen release was observed also in sealed S-repleted cultures of rubisco mutated cells under low-moderate light conditions. In particular, the rubisco mutant Y67A accounted for 10-15-fold higher hydrogen production than the wild type under the same conditions and also displayed divergent metabolic parameters. These results indicate that rubisco is a promising target for improving hydrogen production rates in engineered microalgae.

KW - Metabolic engineering

KW - Biohydrogen

KW - Rubisco

KW - Chlamydomonas reinhardtii

U2 - 10.1007/s00253-013-4920-z

DO - 10.1007/s00253-013-4920-z

M3 - Article

VL - 97

SP - 5635

EP - 5643

JO - Applied Microbiology and Biotechnology

JF - Applied Microbiology and Biotechnology

SN - 0175-7598

IS - 12

ER -