Rheological Properties Of Acetoxypropylcellulose In The Thermotropic Chiral Nematic Phase

Research output: Contribution to journalConference articlepeer-review

13 Citations (Scopus)


Experimental data for the rheological behavior of two thermotropic liquid crystalline (LC) samples of acetoxypropylcellulose (APC) with different molecular weights, at 120°C, and in shear rates between 0.01 and 10 s-1, are presented and analyzed in the framework of the continuum theory for LC polymers recently proposed by Martins1. The viscosity (λ) shows a strong shear thinning in the range of shear rates λ studied, with an hesitation at shear rates of about 0.1-0.2 s-1, depending on the molecular weight, and the first normal stress difference N,(λ) shows only positive values, increasing with shear rate λ, with an hesitation at shear rates of an order of magnitude higher, i.e. about 1-2 s-1, also depending on the molecular weight. The hesitation points of the flow functions are displaced towards lower values of the shear rate, with increasing molecular weight. For small and intermediate γ the shear viscosity of the higher molecular weight sample is greater than the corresponding viscosity for the lower molecular weight sample, but this pattern is reversed at higher 7, the crossover point being at y-1.5 s-1. The molecular weight dependence of the first normal stress difference follows a similar pattern. All these observations can be interpreted by Martins’ theory. The expressions for 77(7) and N1(γ) derived from this theory fit very well to the experimental data, therefore allowing for some fundamental viscoelastic parameters to be estimated.

Original languageEnglish
Pages (from-to)617-625
Number of pages9
JournalMolecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals
Issue number1
Publication statusPublished - 1 Jan 1995
Event15th International Liquid Crystal Conference - Budapest, Hungary
Duration: 3 Jul 19948 Jul 1994


Dive into the research topics of 'Rheological Properties Of Acetoxypropylcellulose In The Thermotropic Chiral Nematic Phase'. Together they form a unique fingerprint.

Cite this