TY - JOUR
T1 - Revisiting the metal sites of nitrous oxide reductase in a low-dose structure from Marinobacter nauticus
AU - Pomowski, Anja
AU - Dell’Acqua, Simone
AU - Wüst, Anja
AU - Pauleta, Sofia R.
AU - Moura, Isabel
AU - Einsle, Oliver
N1 - info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F04378%2F2020/PT#
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04378%2F2020/PT#
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/LA%2FP%2F0140%2F2020/PT#
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50006%2F2020/PT#
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F50006%2F2020/PT#
info:eu-repo/grantAgreement/FCT/3599-PPCDT/2022.01152.PTDC/PT#
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/LA%2FP%2F0140%2F2020/PT#
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50006%2F2020/PT#
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F50006%2F2020/PT#
info:eu-repo/grantAgreement/EC/FP7/310656/EU#
Funding Information:
This work was supported by the Deutsche Forschungsgemeinschaft (RTG 1976, Project No. 235777276, and PP 1927, Project No. 311061829 to O.E.) and the European Research Council (Grant No. 310656 to O.E.). The authors thank Lin Zhang for the helpful discussions.
Funding Information:
Open Access funding enabled and organized by Projekt DEAL. This work was funded by European Molecular Biology Organization, ASTF 282.00-2010, Deutsche Forschungsgemeinschaft, PP 1927, Project No. 311061829, RTG 1976, Project No. 235777276, FP7
Publisher Copyright:
© The Author(s) 2024.
PY - 2024/4
Y1 - 2024/4
N2 - Copper-containing nitrous oxide reductase catalyzes a 2-electron reduction of the green-house gas N2O to yield N2. It contains two metal centers, the binuclear electron transfer site CuA, and the unique, tetranuclear CuZ center that is the site of substrate binding. Different forms of the enzyme were described previously, representing variations in oxidation state and composition of the metal sites. Hypothesizing that many reported discrepancies in the structural data may be due to radiation damage during data collection, we determined the structure of anoxically isolated Marinobacter nauticus N2OR from diffraction data obtained with low-intensity X-rays from an in-house rotating anode generator and an image plate detector. The data set was of exceptional quality and yielded a structure at 1.5 Å resolution in a new crystal form. The CuA site of the enzyme shows two distinct conformations with potential relevance for intramolecular electron transfer, and the CuZ cluster is present in a [4Cu:2S] configuration. In addition, the structure contains three additional types of ions, and an analysis of anomalous scattering contributions confirms them to be Ca2+, K+, and Cl–. The uniformity of the present structure supports the hypothesis that many earlier analyses showed inhomogeneities due to radiation effects. Adding to the earlier description of the same enzyme with a [4Cu:S] CuZ site, a mechanistic model is presented, with a structurally flexible CuZ center that does not require the complete dissociation of a sulfide prior to N2O binding. Graphical Abstract: The [4Cu:2S] CuZ site in M. nauticus N 2O reductase. The electron density map shown is contoured at the 5 σ level, highlighting the presence of two sulfide ligands. 705x677mm (72 x 72 DPI) (Figure presented.)
AB - Copper-containing nitrous oxide reductase catalyzes a 2-electron reduction of the green-house gas N2O to yield N2. It contains two metal centers, the binuclear electron transfer site CuA, and the unique, tetranuclear CuZ center that is the site of substrate binding. Different forms of the enzyme were described previously, representing variations in oxidation state and composition of the metal sites. Hypothesizing that many reported discrepancies in the structural data may be due to radiation damage during data collection, we determined the structure of anoxically isolated Marinobacter nauticus N2OR from diffraction data obtained with low-intensity X-rays from an in-house rotating anode generator and an image plate detector. The data set was of exceptional quality and yielded a structure at 1.5 Å resolution in a new crystal form. The CuA site of the enzyme shows two distinct conformations with potential relevance for intramolecular electron transfer, and the CuZ cluster is present in a [4Cu:2S] configuration. In addition, the structure contains three additional types of ions, and an analysis of anomalous scattering contributions confirms them to be Ca2+, K+, and Cl–. The uniformity of the present structure supports the hypothesis that many earlier analyses showed inhomogeneities due to radiation effects. Adding to the earlier description of the same enzyme with a [4Cu:S] CuZ site, a mechanistic model is presented, with a structurally flexible CuZ center that does not require the complete dissociation of a sulfide prior to N2O binding. Graphical Abstract: The [4Cu:2S] CuZ site in M. nauticus N 2O reductase. The electron density map shown is contoured at the 5 σ level, highlighting the presence of two sulfide ligands. 705x677mm (72 x 72 DPI) (Figure presented.)
KW - Copper-containing enzyme
KW - Denitrification
KW - NO reductase
KW - Nitrogen cycle
KW - Nitrous oxide
KW - X-ray crystallography
UR - http://www.scopus.com/inward/record.url?scp=85192532192&partnerID=8YFLogxK
U2 - 10.1007/s00775-024-02056-y
DO - 10.1007/s00775-024-02056-y
M3 - Article
C2 - 38720157
AN - SCOPUS:85192532192
SN - 0949-8257
VL - 29
SP - 279
EP - 290
JO - Journal of Biological Inorganic Chemistry
JF - Journal of Biological Inorganic Chemistry
IS - 3
ER -