TY - JOUR
T1 - Revealing the nature of the Zn2GeO4 bluish-white emission in microwave-assisted hydrothermal synthesized nanorods
AU - Dias, Miguel P.
AU - Batista, Maria S.
AU - Pimentel, Ana
AU - Fortunato, Elvira
AU - Martins, Rodrigo
AU - Costa, Florinda M.
AU - Pereira, Sónia O.
AU - Rodrigues, Joana
AU - Monteiro, Teresa
N1 - info:eu-repo/grantAgreement/FCT/Concurso de avaliação no âmbito do Programa Plurianual de Financiamento de Unidades de I&D (2017%2F2018) - Financiamento Base/UIDB%2F50025%2F2020/PT#
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F50025%2F2020/PT#
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/LA%2FP%2F0037%2F2020/PT#
info:eu-repo/grantAgreement/FCT/Concurso de Projetos de I&D em Todos os Domínios Científicos - 2022/2022.05329.PTDC/PT#
info:eu-repo/grantAgreement/FCT/3599-PPCDT/2022.08597.PTDC/PT
info:eu-repo/grantAgreement/FCT/Concurso de Projetos IC&DT em Todos os Domínios Científicos/PTDC%2FEQU-EPQ%2F2195%2F2021/PT#
info:eu-repo/grantAgreement/FCT/CEEC IND5ed/2022.00010.CEECIND%2FCP1720%2FCT0023/PT#
info:eu-repo/grantAgreement/FCT//UI%2FBD%2F152567%2F2022/PT#
This study has the support of the Institute for Nanostructures, Nanomodelling and Nanofabrication (i3N), through projects UIDB/50025/2020–2023 & UIDP/50025/2020–2023 & LA/P/0037/2020, as well as IonProGO (2022.05329. PTDC), DOI: 10.54499/2022.05329, 2023.00054. RESTART, LIGHEART (2022.08597. PTDC) and, CO2RED (PTDC/EQU-EPQ/2195/2021) projects, all funded by the Foundation for Science and Technology (FCT). J. Rodrigues acknowledges FCT for Programme Stimulus of Scientific Employment–Individual Support (grant 2022.00010. CEECIND/CP1720/CT0023, DOI: 10.54499/2022.00010. CEECIND/CP1720/CT0023). M. S. Batista thanks i3N and FCT for the PhD grant (UI/BD/152567/2022).
Publisher Copyright:
© 2025 The Authors
PY - 2025/4/1
Y1 - 2025/4/1
N2 - Recently, zinc germanate (Zn2GeO4, ZGO) has emerged as a material with significant potential for various applications due to its unique optical properties. Undoped, manganese (Mn) and and chromium (Cr)-doped ZGO were synthesized through microwave-assisted hydrothermal methods. The as-synthesized and thermal annealed materials were morphological and structurally characterized, and the optical properties of these willemite prismatic nanorods were thoroughly investigated. A room temperature (RT) bandgap energy close to 236 nm (∼5.25 eV) was obtained, which is slightly higher than the values reported so far in the literature. Furthermore, optically active absorption and luminescence bands from the ultraviolet to near-infrared were identified. All samples present intrinsic defect absorption with a maximum at 271 nm (∼4.58 eV) and a charge transfer Mn2+-O2- absorption band at 315 nm (∼3.94 eV). In addition, the so-called bluish-white structureless broad emission band is observed at RT at ca. 480 nm (∼2.58 eV) for all the analyzed samples. Our investigation indicates that this band is due to the overlap of two emitting centers: an intrinsic defect originating a blue luminescence (BL) and the 4T1→6A1 intraionic transition of Mn2+ leading to a green luminescence (GL), confirming Mn as a common contaminant in this matrix. For the Cr-doped samples, the thermal annealing treatment was seen to promote changes in the visible and near infrared (NIR) intraionic absorption bands. This enabled the identification of the presence of trivalent and tetravalent Cr ion charge states. Additionally, temperature-dependent photoluminescence measurements were carried out in the case of the as-synthesized ZGO:Mn, which is the sample with the highest GL intensity. It was found that the intensity of GL decreases with temperature (from 18 K to RT), with a thermal activation energy of 18 ± 2 meV for the nonradiative processes that compete with the observed luminescence. Moreover, persistent emission from the Mn2+ GL was recorded for at least 5 s and was attributed to multi-trapping/de-trapping processes occurring at different trap depths, which are responsible for the distinct decays observed.
AB - Recently, zinc germanate (Zn2GeO4, ZGO) has emerged as a material with significant potential for various applications due to its unique optical properties. Undoped, manganese (Mn) and and chromium (Cr)-doped ZGO were synthesized through microwave-assisted hydrothermal methods. The as-synthesized and thermal annealed materials were morphological and structurally characterized, and the optical properties of these willemite prismatic nanorods were thoroughly investigated. A room temperature (RT) bandgap energy close to 236 nm (∼5.25 eV) was obtained, which is slightly higher than the values reported so far in the literature. Furthermore, optically active absorption and luminescence bands from the ultraviolet to near-infrared were identified. All samples present intrinsic defect absorption with a maximum at 271 nm (∼4.58 eV) and a charge transfer Mn2+-O2- absorption band at 315 nm (∼3.94 eV). In addition, the so-called bluish-white structureless broad emission band is observed at RT at ca. 480 nm (∼2.58 eV) for all the analyzed samples. Our investigation indicates that this band is due to the overlap of two emitting centers: an intrinsic defect originating a blue luminescence (BL) and the 4T1→6A1 intraionic transition of Mn2+ leading to a green luminescence (GL), confirming Mn as a common contaminant in this matrix. For the Cr-doped samples, the thermal annealing treatment was seen to promote changes in the visible and near infrared (NIR) intraionic absorption bands. This enabled the identification of the presence of trivalent and tetravalent Cr ion charge states. Additionally, temperature-dependent photoluminescence measurements were carried out in the case of the as-synthesized ZGO:Mn, which is the sample with the highest GL intensity. It was found that the intensity of GL decreases with temperature (from 18 K to RT), with a thermal activation energy of 18 ± 2 meV for the nonradiative processes that compete with the observed luminescence. Moreover, persistent emission from the Mn2+ GL was recorded for at least 5 s and was attributed to multi-trapping/de-trapping processes occurring at different trap depths, which are responsible for the distinct decays observed.
KW - Defects
KW - Doping
KW - Nanorods
KW - Persistent luminescence
KW - Zinc germanate
UR - http://www.scopus.com/inward/record.url?scp=85216454574&partnerID=8YFLogxK
UR - https://www.webofscience.com/wos/woscc/full-record/WOS:001422506700001
U2 - 10.1016/j.matchemphys.2025.130463
DO - 10.1016/j.matchemphys.2025.130463
M3 - Article
AN - SCOPUS:85216454574
SN - 0254-0584
VL - 334
SP - 1
EP - 8
JO - Materials Chemistry And Physics
JF - Materials Chemistry And Physics
M1 - 130463
ER -