Resonance Raman fingerprinting of multiheme cytochromes from the cytochrome c3 family.

Research output: Contribution to journalArticle

3 Citations (Scopus)


Resonance Raman (RR) spectroscopy was used to investigate conformational characteristics of the hemes of several ferricytochromes of the cytochrome c3 family, electron transfer proteins isolated from the periplasm and membranes of sulfate-reducing bacteria. Our analysis concentrated on the low-frequency region of the RR spectra, a fingerprint region that includes vibrations for heme-protein C-S bonds [nu(C(a)S)]. It has been proposed that these bonds are directly involved in the electron transfer process. The three groups of tetraheme cytochrome c3 analyzed, namely Type I cytochrome c (3) (TpIc (3)s), Type II cytochrome c (3) (TpIIc (3)s) and Desulfomicrobium cytochromes c3, display different frequency separations for the two nu(C(a)S) lines that are similar among members of each group. These spectral differences correlate with differences in protein structure observed among the three groups of cytochromes c3. Two larger cytochromes of the cytochrome c3 family display RR spectral characteristics for the nu(C(a)S) lines that are closer to TpIIc3 than to TpIc3. Two other multiheme cytochromes from Desulfovibrio that do not belong to the cytochrome c3 family display nu(C(a)S) lines with reverse relative areas in comparison with the latter family. This RR study shows that the small differences in protein structure observed among these cytochrome c3 correlate to differences on the heme-protein bonds, which are likely to have an impact upon the protein function, making RR spectroscopy a sensitive and useful tool for characterizing these cytochromes.
Original languageUnknown
Pages (from-to)217-24
JournalJournal Of Biological Inorganic Chemistry
Issue number2
Publication statusPublished - 1 Jan 2006

Cite this