Abstract
Nickel particles deposited on hydrothermally synthesized ceria nanorods (CeO2-NR) were found to be highly active and stable for CO2 methanation. A CO2-to-CH4 yield of 92% was achieved at 300 °C. The impact of various operational parameters was explored in conjunction with a thermodynamic analysis. The superior performance of Ni/CeO2-NR was demonstrated through a comparison with i) CeO2 and Ni/CeO2 commercial products, ii) various M/CeO2-NR lab-synthesized catalysts (M = Cu, Co, Fe), and iii) state-of-the-art literature catalysts. The results revealed that a unique combination of Ni with ceria nanorods is required for boosting the reducibility and in turn the methanation efficiency.
Original language | English |
---|---|
Article number | 106036 |
Journal | Catalysis Communications |
Volume | 142 |
DOIs | |
Publication status | Published - Jul 2020 |
Keywords
- Ceria nanorods
- CO methanation
- Ni catalyst
- Ni/CeO