REMARK ON SINGULAR INTEGRAL OPERATORS OF CONVOLUTION TYPE ON REARRANGEMENT-INVARIANT BANACH FUNCTION SPACES

Oleksiy Karlovych, Eugene Shargorodsky

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

We prove that nondegenerate singular integral operators of convolution type are bounded on a rearrangement-invariant Banach function space X(Rd) if and only if its Boyd indices are nontrivial, extending the result by David Boyd (1966) for the Hilbert transform.

Original languageEnglish
Pages (from-to)139-148
Number of pages10
JournalReal Analysis Exchange
Volume48
Issue number1
DOIs
Publication statusPublished - 2023

Keywords

  • Boyd indices
  • Calderón-Zygmund singular integral operators of convolution type
  • rearrangement-invariant Banach function spaces

Fingerprint

Dive into the research topics of 'REMARK ON SINGULAR INTEGRAL OPERATORS OF CONVOLUTION TYPE ON REARRANGEMENT-INVARIANT BANACH FUNCTION SPACES'. Together they form a unique fingerprint.

Cite this