Reduction of Carbon Dioxide by a Molybdenum-Containing Formate Dehydrogenase: A Kinetic and Mechanistic Study

Research output: Contribution to journalArticlepeer-review

57 Citations (Scopus)

Abstract

Carbon dioxide accumulation is a major concern for the ecosystems, but its abundance and low cost make it an interesting source for the production of chemical feedstocks and fuels. However, the thermodynamic and kinetic stability of the carbon dioxide molecule makes its activation a challenging task. Studying the chemistry used by nature to functionalize carbon dioxide should be helpful for the development of new efficient (bio)catalysts for atmospheric carbon dioxide utilization. In this work, the ability of Desulfovibrio desulfuricans formate dehydrogenase (Dd FDH) to reduce carbon dioxide was kinetically and mechanistically characterized. The Dd FDH is suggested to be purified in an inactive form that has to be activated through a reduction-dependent mechanism. A kinetic model of a hysteretic enzyme is proposed to interpret and predict the progress curves of the Dd FDH-catalyzed reactions (initial lag phase and subsequent faster phase). Once activated, Dd FDH is able to efficiently catalyze, not only the formate oxidation (kcat of 543 s-1, Km of 57.1 μM), but also the carbon dioxide reduction (kcat of 46.6 s-1, Km of 15.7 μM), in an overall reaction that is thermodynamically and kinetically reversible. Noteworthy, both Dd FDH-catalyzed formate oxidation and carbon dioxide reduction are completely inactivated by cyanide. Current FDH reaction mechanistic proposals are discussed and a different mechanism is here suggested: formate oxidation and carbon dioxide reduction are proposed to proceed through hydride transfer and the sulfo group of the oxidized and reduced molybdenum center, Mo6+=S and Mo4+-SH, are suggested to be the direct hydride acceptor and donor, respectively. © 2016 American Chemical Society.
Original languageEnglish
Pages (from-to)8834-8846
Number of pages13
JournalJournal of the American Chemical Society
Volume138
Issue number28
DOIs
Publication statusPublished - 20 Jul 2016

Keywords

  • PERIPLASMIC NITRATE REDUCTASE
  • DESULFOVIBRIO-DESULFURICANS ATCC-27774
  • DIMETHYL-SULFOXIDE REDUCTASE
  • XANTHINE-OXIDASE
  • NAD(+)-DEPENDENT FORMATE
  • CRYSTAL-STRUCTURE
  • METHANOBACTERIUM-FORMICICUM
  • ESCHERICHIA-COLI
  • RHODOBACTER-CAPSULATUS
  • VULGARIS HILDENBOROUGH

Fingerprint

Dive into the research topics of 'Reduction of Carbon Dioxide by a Molybdenum-Containing Formate Dehydrogenase: A Kinetic and Mechanistic Study'. Together they form a unique fingerprint.

Cite this