Redox proteomics changes in the fungal pathogen trichosporon asahii on arsenic exposure: Identification of protein responses to metal-induced oxidative stress in an environmentally-sampled isolate

Sidra Ilyas, Abdul Rehman, Ana Maria Coelho, David Sheehan

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)

Abstract

Trichosporon asahii is a yeast pathogen implicated in opportunistic infections. Cultures of an isolate collected from industrial wastewater were exposed for 2 days to 100 mg/L sodium arsenite (NaAsO2) and cadmium (CdCl2). Both metals reduced glutathione transferase (GST) activity but had no effect on superoxide dismutase or catalase. NaAsO2 exposure increased glutathione reductase activity while CdCl2 had no effect. Protein thiols were labeled with 5-iodoacetamido fluorescein followed by one dimensional electrophoresis which revealed extensive protein thiol oxidation in response to CdCl2 treatment but thiol reduction in response to NaAsO2. Two dimensional electrophoresis analyses showed that the intensity of some protein spots was enhanced on treatment as judged by SameSpots image analysis software. In addition, some spots showed decreased IAF fluorescence suggesting thiol oxidation. Selected spots were excised and tryptic digested for identification by MALDI-TOF/TOF MS. Twenty unique T. asahii proteins were identified of which the following proteins were up-regulated in response to NaAsO2: 3-isopropylmalate dehydrogenase, phospholipase B, alanine-glyoxylate aminotransferase, ATP synthase alpha chain, 20S proteasome beta-type subunit Pre3p and the hypothetical proteins A1Q1-08001, A1Q2-03020, A1Q1-06950, A1Q1-06913. In addition, the following showed decreased thiol-associated fluorescence consistent with thiol oxidation; aconitase; aldehyde reductase I; phosphoglycerate kinase; translation elongation factor 2; heat shock protein 70 and hypothetical protein A1Q2-04745. Some proteins showed both increase in abundance coupled with decrease in IAF fluorescence; 3-hydroxyisobutyryl- CoA hydrolase; homoserine dehydrogenase Hom6 and hypothetical proteins A1Q2-03020 and A1Q1-00754. Targets implicated in redox response included 10 unique metabolic enzymes, heat shock proteins, a component of the 20S proteasome and translation elongation factor 2. These data suggest extensive proteomic alterations in response to metal-induced oxidative stress in T. asahii. Amino acid metabolism, protein folding and degradation are principally affected.

Original languageEnglish
Article numbere102340
JournalPlosOne
Volume9
Issue number7
DOIs
Publication statusPublished - 25 Jul 2014

Fingerprint

Dive into the research topics of 'Redox proteomics changes in the fungal pathogen trichosporon asahii on arsenic exposure: Identification of protein responses to metal-induced oxidative stress in an environmentally-sampled isolate'. Together they form a unique fingerprint.

Cite this