TY - JOUR
T1 - Quantum interference in laser spectroscopy of highly charged lithiumlike ions
AU - Amaro, Pedro
AU - Loureiro, Ulisses
AU - Safari, Laleh
AU - Fratini, Filippo
AU - Indelicato, Paul
AU - Stöhlker, Thomas
AU - Santos, José Paulo
N1 - This work was funded by the Portuguese Fundacao para a Ciencia e a Tecnologia (FCT/MCTES/PIDDAC) under Grant No. UID/FIS/04559/2013 (LIBPhys). P.A. acknowledges the support of the FCT, under Contract No. SFRH/BPD/92329/2013. L.S. acknowledges financial support from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA Grant Agreement No. (291734). Laboratoire Kastler Brossel (LKB) is "Unite Mixte de Recherche de Sorbonne Universite, de ENS-PSL Research University, du College de France et du CNRS No. 8552."
PY - 2018/2/21
Y1 - 2018/2/21
N2 - We investigate the quantum interference induced shifts between energetically close states in highly charged ions, with the energy structure being observed by laser spectroscopy. In this work, we focus on hyperfine states of lithiumlike heavy-Z isotopes and quantify how much quantum interference changes the observed transition frequencies. The process of photon excitation and subsequent photon decay for the transition 2s→2p→2s is implemented with fully relativistic and full-multipole frameworks, which are relevant for such relativistic atomic systems. We consider the isotopes Pb79+207 and Bi80+209 due to experimental interest, as well as other examples of isotopes with lower Z, namely Pr56+141 and Ho64+165. We conclude that quantum interference can induce shifts up to 11% of the linewidth in the measurable resonances of the considered isotopes, if interference between resonances is neglected. The inclusion of relativity decreases the cross section by 35%, mainly due to the complete retardation form of the electric dipole multipole. However, the contribution of the next higher multipoles (e.g., magnetic quadrupole) to the cross section is negligible. This makes the contribution of relativity and higher-order multipoles to the quantum interference induced shifts a minor effect, even for heavy-Z elements.
AB - We investigate the quantum interference induced shifts between energetically close states in highly charged ions, with the energy structure being observed by laser spectroscopy. In this work, we focus on hyperfine states of lithiumlike heavy-Z isotopes and quantify how much quantum interference changes the observed transition frequencies. The process of photon excitation and subsequent photon decay for the transition 2s→2p→2s is implemented with fully relativistic and full-multipole frameworks, which are relevant for such relativistic atomic systems. We consider the isotopes Pb79+207 and Bi80+209 due to experimental interest, as well as other examples of isotopes with lower Z, namely Pr56+141 and Ho64+165. We conclude that quantum interference can induce shifts up to 11% of the linewidth in the measurable resonances of the considered isotopes, if interference between resonances is neglected. The inclusion of relativity decreases the cross section by 35%, mainly due to the complete retardation form of the electric dipole multipole. However, the contribution of the next higher multipoles (e.g., magnetic quadrupole) to the cross section is negligible. This makes the contribution of relativity and higher-order multipoles to the quantum interference induced shifts a minor effect, even for heavy-Z elements.
UR - http://www.scopus.com/inward/record.url?scp=85042237843&partnerID=8YFLogxK
U2 - 10.1103/PhysRevA.97.022510
DO - 10.1103/PhysRevA.97.022510
M3 - Article
AN - SCOPUS:85042237843
SN - 2469-9926
VL - 97
JO - Physical Review A
JF - Physical Review A
IS - 2
M1 - 022510
ER -