TY - JOUR
T1 - Proteomic analysis of STEAP1 knockdown in human LNCaP prostate cancer cells
AU - Rocha, Sandra M.
AU - Santos, Fátima M.
AU - Socorro, Sílvia
AU - Passarinha, Luís A.
AU - Maia, Cláudio J.
N1 - Funding Information:
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00709%2F2020/PT#
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04378%2F2020/PT#
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F04378%2F2020/PT#
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/LA%2FP%2F0140%2F2020/PT#
FEDER funds through the POCI—COMPETE 2020—Operational Program Competitiveness and Internationalization in Axis I—Strengthening research, technological development and innovation (Project No. 029114 ).
Publisher Copyright:
© 2023 The Authors
PY - 2023/10
Y1 - 2023/10
N2 - Prostate cancer (PCa) continues to be one of the most common cancers in men worldwide. The six transmembrane epithelial antigen of the prostate 1 (STEAP1) protein is overexpressed in several types of human tumors, particularly in PCa. Our research group has demonstrated that STEAP1 overexpression is associated with PCa progression and aggressiveness. Therefore, understanding the cellular and molecular mechanisms triggered by STEAP1 overexpression will provide important insights to delineate new strategies for PCa treatment. In the present work, a proteomic strategy was used to characterize the intracellular signaling pathways and the molecular targets downstream of STEAP1 in PCa cells. A label-free approach was applied using an Orbitrap LC-MS/MS system to characterize the proteome of STEAP1-knockdown PCa cells. More than 6700 proteins were identified, of which a total of 526 proteins were found differentially expressed in scramble siRNA versus STEAP1 siRNA (234 proteins up-regulated and 292 proteins down-regulated). Bioinformatics analysis allowed us to explore the mechanism through which STEAP1 exerts influence on PCa, revealing that endocytosis, RNA transport, apoptosis, aminoacyl-tRNA biosynthesis, and metabolic pathways are the main biological processes where STEAP1 is involved. By immunoblotting, it was confirmed that STEAP1 silencing induced the up-regulation of cathepsin B, intersectin-1, and syntaxin 4, and the down-regulation of HRas, PIK3C2A, and DIS3. These findings suggested that blocking STEAP1 might be a suitable strategy to activate apoptosis and endocytosis, and diminish cellular metabolism and intercellular communication, leading to inhibition of PCa progression.
AB - Prostate cancer (PCa) continues to be one of the most common cancers in men worldwide. The six transmembrane epithelial antigen of the prostate 1 (STEAP1) protein is overexpressed in several types of human tumors, particularly in PCa. Our research group has demonstrated that STEAP1 overexpression is associated with PCa progression and aggressiveness. Therefore, understanding the cellular and molecular mechanisms triggered by STEAP1 overexpression will provide important insights to delineate new strategies for PCa treatment. In the present work, a proteomic strategy was used to characterize the intracellular signaling pathways and the molecular targets downstream of STEAP1 in PCa cells. A label-free approach was applied using an Orbitrap LC-MS/MS system to characterize the proteome of STEAP1-knockdown PCa cells. More than 6700 proteins were identified, of which a total of 526 proteins were found differentially expressed in scramble siRNA versus STEAP1 siRNA (234 proteins up-regulated and 292 proteins down-regulated). Bioinformatics analysis allowed us to explore the mechanism through which STEAP1 exerts influence on PCa, revealing that endocytosis, RNA transport, apoptosis, aminoacyl-tRNA biosynthesis, and metabolic pathways are the main biological processes where STEAP1 is involved. By immunoblotting, it was confirmed that STEAP1 silencing induced the up-regulation of cathepsin B, intersectin-1, and syntaxin 4, and the down-regulation of HRas, PIK3C2A, and DIS3. These findings suggested that blocking STEAP1 might be a suitable strategy to activate apoptosis and endocytosis, and diminish cellular metabolism and intercellular communication, leading to inhibition of PCa progression.
KW - Endocytic pathway
KW - Intercellular communication
KW - Label-free quantification
KW - Prostate cancer
KW - Proteomics
KW - STEAP1
UR - http://www.scopus.com/inward/record.url?scp=85163214069&partnerID=8YFLogxK
U2 - 10.1016/j.bbamcr.2023.119522
DO - 10.1016/j.bbamcr.2023.119522
M3 - Article
C2 - 37315586
AN - SCOPUS:85163214069
SN - 0167-4889
VL - 1870
JO - Biochimica et Biophysica Acta - Molecular Cell Research
JF - Biochimica et Biophysica Acta - Molecular Cell Research
IS - 7
M1 - 119522
ER -