Production of medium-chain-length polyhydroxyalkanoates by Pseudomonas: Cultivation on fruit pulp waste and polymer characterizationchlororaphis subsp. aurantiaca

Research output: Contribution to journalArticlepeer-review

36 Citations (Scopus)

Abstract

Pseudomonas chlororaphis subsp. aurantiaca DSM 19603 was cultivated on apple pulp, a glucose- and fructose-rich waste generated during juice production, to produce medium-chain length polyhydroxyalkanoates. A cell dry mass of 8.74 ± 0.20 g/L, with a polymer content of 49.25 ± 4.08% were attained. The produced biopolymer was composed of 42.7 ± 0.1 mol% 3-hydroxydecanoate, 17.9 ± 1.0 mol% 3-hydroxyoctanoate, 14.5 ± 1.1 mol% 3-hydroxybutyrate, 11.1 ± 0.6 mol% 3-hydroxytetradecanoate, 10.1 ± 0.5 mol% 3-hydroxydodecanoate and 3.7 ± 0.2 mol% 3-hydroxyhexanoate. It presented low glass transition and melting temperatures (−40.9 ± 0.7 °C and 42.0 ± 0.1 °C, respectively), and a degradation temperature of 300.0 ± 0.1 °C, coupled to a low crystallinity index (12.7 ± 2.7%), a molecular weight (Mw) of 1.34 × 105 ± 0.18 × 105 Da and a polydispersity index of 2.70 ± 0.03. The biopolymer's films were dense and had a smooth surface, as demonstrated by Scanning Electron Microscopy. They presented a tension at break of 5.21 ± 1.09 MPa, together with an elongation of 400.5 ± 55.8% and an associated Young modulus of 4.86 ± 1.49 MPa, under tensile tests. These attractive filming properties of this biopolymer could potentially be valorised in several areas such as the fine chemicals industry, biomedicine, pharmaceuticals, or food packaging.

Original languageEnglish
Pages (from-to)85-92
Number of pages8
JournalInternational Journal of Biological Macromolecules
Volume167
DOIs
Publication statusPublished - 15 Jan 2021

Keywords

  • Fruit pulp waste
  • Polyhydroxyalkanoates (PHA)
  • Pseudomonas chlororaphis

Fingerprint

Dive into the research topics of 'Production of medium-chain-length polyhydroxyalkanoates by Pseudomonas: Cultivation on fruit pulp waste and polymer characterizationchlororaphis subsp. aurantiaca'. Together they form a unique fingerprint.

Cite this