Abstract
The increase of conductivity of electrolytes favors the current production in microbial fuel cells (MFCs). Adaptation of cell cultures to higher ionic strength is a promising strategy to increase electricity production. The bacterium Geobacter sulfurreducens is considered a leading candidate for MFCs. Therefore, it is important to evaluate the impact of the ionic strength on the functional properties of key periplasmic proteins that warrants electron transfer to cell exterior. The effect of the ionic strength on the functional properties of triheme cytochrome PpcA, the most abundant periplasmic cytochrome in G. sulfurreducens, was investigated by NMR and potentiometric methods. The redox properties of heme IV are the most affected ones. Chemical shift perturbation measurements on the backbone NMR signals, at increasing ionic strength, also showed that the region close to heme IV is the most affected due to the large number of positively charged residues, which confer a highly positive electrostatic surface around this heme. The shielding of these positive charges at high ionic strength explain the observed decrease in the reduction potential of heme IV and shows that PpcA was designed to maintain its functional mechanistic features even at high ionic strength.
Original language | English |
---|---|
Pages (from-to) | 12416-12425 |
Number of pages | 10 |
Journal | Journal of Physical Chemistry B |
Volume | 118 |
Issue number | 43 |
DOIs | |
Publication status | Published - 30 Oct 2014 |