TY - JOUR
T1 - Potassium Ferrite for Biomedical Applications
AU - Carvalho, João P. F.
AU - Vieira, Tânia
AU - Silva, Jorge Carvalho
AU - Soares, Paula I. P.
AU - Ferreira, Nuno M.
AU - Amorim, Carlos O.
AU - Teixeira, Sílvia Soreto
AU - Graça, Manuel P. F.
N1 - Funding Information:
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50025%2F2020/PT#
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F50025%2F2020/PT#
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FCTM%2F50025%2F2019/PT#
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F50011%2F2020/PT#
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F50011%2F2020/PT#
LA/P/0037/2020.
LA/P/0006/2020.
Publisher Copyright:
© 2023 by the authors.
PY - 2023/5/22
Y1 - 2023/5/22
N2 - Ferrites have been widely studied for their use in the biomedical area, mostly due to their magnetic properties, which gives them the potential to be used in diagnostics, drug delivery, and in treatment with magnetic hyperthermia, for example. In this work, KFeO2 particles were synthesized with a proteic sol-gel method using powdered coconut water as a precursor; this method is based on the principles of green chemistry. To improve its properties, the base powder obtained was subjected to multiple heat treatments at temperatures between 350 and 1300 °C. The samples obtained underwent structural, morphological, biocompatibility, and magnetic characterization. The results show that upon raising the heat treatment temperature, not only is the wanted phase detected, but also the secondary phases. To overcome these secondary phases, several different heat treatments were carried out. Using scanning electron microscopy, grains in the micrometric range were observed. Saturation magnetizations between 15.5 and 24.1 emu/g were observed for the samples containing KFeO2 with an applied field of 50 kOe at 300 K. From cellular compatibility (cytotoxicity) assays, for concentrations up to 5 mg/mL, only the samples treated at 350 °C were cytotoxic. However, the samples containing KFeO2, while being biocompatible, had low specific absorption rates (1.55–5.76 W/g).
AB - Ferrites have been widely studied for their use in the biomedical area, mostly due to their magnetic properties, which gives them the potential to be used in diagnostics, drug delivery, and in treatment with magnetic hyperthermia, for example. In this work, KFeO2 particles were synthesized with a proteic sol-gel method using powdered coconut water as a precursor; this method is based on the principles of green chemistry. To improve its properties, the base powder obtained was subjected to multiple heat treatments at temperatures between 350 and 1300 °C. The samples obtained underwent structural, morphological, biocompatibility, and magnetic characterization. The results show that upon raising the heat treatment temperature, not only is the wanted phase detected, but also the secondary phases. To overcome these secondary phases, several different heat treatments were carried out. Using scanning electron microscopy, grains in the micrometric range were observed. Saturation magnetizations between 15.5 and 24.1 emu/g were observed for the samples containing KFeO2 with an applied field of 50 kOe at 300 K. From cellular compatibility (cytotoxicity) assays, for concentrations up to 5 mg/mL, only the samples treated at 350 °C were cytotoxic. However, the samples containing KFeO2, while being biocompatible, had low specific absorption rates (1.55–5.76 W/g).
KW - cellular viability
KW - ferrites
KW - magnetic measurements (VSM and SQUID)
KW - sol-gel processes
KW - specific absorption rate (SAR)
KW - X-ray diffraction
UR - http://www.scopus.com/inward/record.url?scp=85160428391&partnerID=8YFLogxK
U2 - 10.3390/ma16103880
DO - 10.3390/ma16103880
M3 - Article
C2 - 37241507
AN - SCOPUS:85160428391
SN - 1996-1944
VL - 16
JO - Materials
JF - Materials
IS - 10
M1 - 3880
ER -