Abstract
The fishing industry produces vast amounts of saline organic side streams that require adequate treatment and disposal. The bioconversion of saline resources into value-added products, such as biodegradable polyhydroxyalkanoates (PHAs), has not yet been fully explored. This study investigated PHA production by mixed microbial cultures under 30 gNaCl/L, the highest NaCl concentration reported for the acclimatization of a PHA-accumulating mixed microbial culture (MMC). The operational conditions used during the culture-selection stage resulted in an enriched PHA-accumulating culture dominated by the Rhodobacteraceae family (95.2%) and capable of storing PHAs up to 84.1% wt. (volatile suspended solids (VSS) basis) for the highest organic loading rate (OLR) applied (120 Cmmol/(L.d)). This culture presented a higher preference for the consumption of valeric acid (0.23 ± 0.03 CmolHVal/(CmolX.h)), and the 3HV monomer polymerization (0.33 ± 0.04 CmmolHV/(CmmolX.h) was higher as well. As result, a P(3HB-co-3HV)) with high HV content (63% wt.) was produced in the accumulation tests conducted at higher OLRs and with 30 gNaCl/L. A global volumetric PHA productivity of 0.77 gPHA/(L.h) and a specific PHA productivity of 0.21 gPHA/(gX.h) were achieved. These results suggested the significant potential of the bioconversion of saline resources into value-added products, such as PHAs.
Original language | English |
---|---|
Article number | 1346 |
Journal | Sustainability |
Volume | 14 |
Issue number | 3 |
DOIs | |
Publication status | Published - 1 Feb 2022 |
Keywords
- Biopolymer
- Halotolerant
- P(3HB-co-3HV)
- PHA-accumulating MMC
- PHAs accumulation
- Saline resources