Pointed homotopy and pointed lax homotopy of 2-crossed module maps

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

We address the (pointed) homotopy theory of 2-crossed modules (of groups), which are known to faithfully represent Gray 3-groupoids, with a single object, and also connected homotopy 3-types. The homotopy relation between 2-crossed module maps will be defined in a similar way to Crans' 1-transfors between strict Gray functors, however being pointed, thus this corresponds to Baues' homotopy relation between quadratic module maps. Despite the fact that this homotopy relation between 2-crossed module morphisms is not, in general, an equivalence relation, we prove that if A and A' are 2-crossed modules, with the underlying group F of A being free (in short A is free up to order one), then homotopy between 2-crossed module maps A \to A' yields, in this case, an equivalence relation. Furthermore, if a chosen basis B is specified for F, then we can define a 2-groupoid HOM_B(A,A') of 2-crossed module maps A \to A', homotopies connecting them, and 2-fold homotopies between homotopies, where the latter correspond to (pointed) Crans' 2-transfors between 1-transfors. We define a partial resolution Q^1(A), for a 2-crossed module A, whose underlying group is free, with a canonical chosen basis, together with a projection map {\rm proj}\colon Q^1(A) \to A, defining isomorphisms at the level of 2-crossed module homotopy groups. This resolution (which is part of a comonad) leads to a weaker notion of homotopy (lax homotopy) between 2-crossed module maps, which we fully develop and describe. In particular, given 2-crossed modules A and A', there exists a 2-groupoid {HOM}_{\rm LAX}(A,A') of (strict) 2-crossed module maps A \to A', and their lax homotopies and lax 2-fold homotopies. The associated notion of a (strict) 2-crossed module map f\colon A \to A' to be a lax homotopy equivalence has the two-of-three property, and it is closed under retracts.
Original languageUnknown
Pages (from-to)986-1049
JournalAdvances In Mathematics
Volume248
Issue numberNA
DOIs
Publication statusPublished - 1 Jan 2013

Keywords

    Cite this

    @article{57c2fa4d8d7a4423b82dcb5b871d138d,
    title = "Pointed homotopy and pointed lax homotopy of 2-crossed module maps",
    abstract = "We address the (pointed) homotopy theory of 2-crossed modules (of groups), which are known to faithfully represent Gray 3-groupoids, with a single object, and also connected homotopy 3-types. The homotopy relation between 2-crossed module maps will be defined in a similar way to Crans' 1-transfors between strict Gray functors, however being pointed, thus this corresponds to Baues' homotopy relation between quadratic module maps. Despite the fact that this homotopy relation between 2-crossed module morphisms is not, in general, an equivalence relation, we prove that if A and A' are 2-crossed modules, with the underlying group F of A being free (in short A is free up to order one), then homotopy between 2-crossed module maps A \to A' yields, in this case, an equivalence relation. Furthermore, if a chosen basis B is specified for F, then we can define a 2-groupoid HOM_B(A,A') of 2-crossed module maps A \to A', homotopies connecting them, and 2-fold homotopies between homotopies, where the latter correspond to (pointed) Crans' 2-transfors between 1-transfors. We define a partial resolution Q^1(A), for a 2-crossed module A, whose underlying group is free, with a canonical chosen basis, together with a projection map {\rm proj}\colon Q^1(A) \to A, defining isomorphisms at the level of 2-crossed module homotopy groups. This resolution (which is part of a comonad) leads to a weaker notion of homotopy (lax homotopy) between 2-crossed module maps, which we fully develop and describe. In particular, given 2-crossed modules A and A', there exists a 2-groupoid {HOM}_{\rm LAX}(A,A') of (strict) 2-crossed module maps A \to A', and their lax homotopies and lax 2-fold homotopies. The associated notion of a (strict) 2-crossed module map f\colon A \to A' to be a lax homotopy equivalence has the two-of-three property, and it is closed under retracts.",
    keywords = "Crossed module, Gray category, Quadratic module, Homotopy 3-type, Peiffer lifting, 2-crossed module, Simplicial group, Tricategory",
    author = "Martins, {Jo{\~a}o Nuno Gon{\cc}alves Faria}",
    note = "Sem PDF conforme despacho.",
    year = "2013",
    month = "1",
    day = "1",
    doi = "10.1016/j.aim.2013.08.020",
    language = "Unknown",
    volume = "248",
    pages = "986--1049",
    journal = "Advances In Mathematics",
    issn = "0001-8708",
    publisher = "Elsevier Science B.V., Amsterdam.",
    number = "NA",

    }

    Pointed homotopy and pointed lax homotopy of 2-crossed module maps. / Martins, João Nuno Gonçalves Faria.

    In: Advances In Mathematics, Vol. 248, No. NA, 01.01.2013, p. 986-1049.

    Research output: Contribution to journalArticle

    TY - JOUR

    T1 - Pointed homotopy and pointed lax homotopy of 2-crossed module maps

    AU - Martins, João Nuno Gonçalves Faria

    N1 - Sem PDF conforme despacho.

    PY - 2013/1/1

    Y1 - 2013/1/1

    N2 - We address the (pointed) homotopy theory of 2-crossed modules (of groups), which are known to faithfully represent Gray 3-groupoids, with a single object, and also connected homotopy 3-types. The homotopy relation between 2-crossed module maps will be defined in a similar way to Crans' 1-transfors between strict Gray functors, however being pointed, thus this corresponds to Baues' homotopy relation between quadratic module maps. Despite the fact that this homotopy relation between 2-crossed module morphisms is not, in general, an equivalence relation, we prove that if A and A' are 2-crossed modules, with the underlying group F of A being free (in short A is free up to order one), then homotopy between 2-crossed module maps A \to A' yields, in this case, an equivalence relation. Furthermore, if a chosen basis B is specified for F, then we can define a 2-groupoid HOM_B(A,A') of 2-crossed module maps A \to A', homotopies connecting them, and 2-fold homotopies between homotopies, where the latter correspond to (pointed) Crans' 2-transfors between 1-transfors. We define a partial resolution Q^1(A), for a 2-crossed module A, whose underlying group is free, with a canonical chosen basis, together with a projection map {\rm proj}\colon Q^1(A) \to A, defining isomorphisms at the level of 2-crossed module homotopy groups. This resolution (which is part of a comonad) leads to a weaker notion of homotopy (lax homotopy) between 2-crossed module maps, which we fully develop and describe. In particular, given 2-crossed modules A and A', there exists a 2-groupoid {HOM}_{\rm LAX}(A,A') of (strict) 2-crossed module maps A \to A', and their lax homotopies and lax 2-fold homotopies. The associated notion of a (strict) 2-crossed module map f\colon A \to A' to be a lax homotopy equivalence has the two-of-three property, and it is closed under retracts.

    AB - We address the (pointed) homotopy theory of 2-crossed modules (of groups), which are known to faithfully represent Gray 3-groupoids, with a single object, and also connected homotopy 3-types. The homotopy relation between 2-crossed module maps will be defined in a similar way to Crans' 1-transfors between strict Gray functors, however being pointed, thus this corresponds to Baues' homotopy relation between quadratic module maps. Despite the fact that this homotopy relation between 2-crossed module morphisms is not, in general, an equivalence relation, we prove that if A and A' are 2-crossed modules, with the underlying group F of A being free (in short A is free up to order one), then homotopy between 2-crossed module maps A \to A' yields, in this case, an equivalence relation. Furthermore, if a chosen basis B is specified for F, then we can define a 2-groupoid HOM_B(A,A') of 2-crossed module maps A \to A', homotopies connecting them, and 2-fold homotopies between homotopies, where the latter correspond to (pointed) Crans' 2-transfors between 1-transfors. We define a partial resolution Q^1(A), for a 2-crossed module A, whose underlying group is free, with a canonical chosen basis, together with a projection map {\rm proj}\colon Q^1(A) \to A, defining isomorphisms at the level of 2-crossed module homotopy groups. This resolution (which is part of a comonad) leads to a weaker notion of homotopy (lax homotopy) between 2-crossed module maps, which we fully develop and describe. In particular, given 2-crossed modules A and A', there exists a 2-groupoid {HOM}_{\rm LAX}(A,A') of (strict) 2-crossed module maps A \to A', and their lax homotopies and lax 2-fold homotopies. The associated notion of a (strict) 2-crossed module map f\colon A \to A' to be a lax homotopy equivalence has the two-of-three property, and it is closed under retracts.

    KW - Crossed module

    KW - Gray category

    KW - Quadratic module

    KW - Homotopy 3-type

    KW - Peiffer lifting

    KW - 2-crossed module

    KW - Simplicial group

    KW - Tricategory

    U2 - 10.1016/j.aim.2013.08.020

    DO - 10.1016/j.aim.2013.08.020

    M3 - Article

    VL - 248

    SP - 986

    EP - 1049

    JO - Advances In Mathematics

    JF - Advances In Mathematics

    SN - 0001-8708

    IS - NA

    ER -