TY - JOUR
T1 - Plasma-enabled growth of vertically oriented carbon nanostructures for AC line filtering capacitors
AU - Bundaleska, N.
AU - Felizardo, E.
AU - Santhosh, N. M.
AU - Upadhyay, K. K.
AU - Bundaleski, N.
AU - Teodoro, O. M. N. D.
AU - Botelho do Rego, A. M.
AU - Ferraria, A. M.
AU - Zavašnik, J.
AU - Cvelbar, U.
AU - Abrashev, M.
AU - Kissovski, J.
AU - Mão de Ferro, A.
AU - Gonçalves, B.
AU - Alves, L. L.
AU - Montemor, M. F.
AU - Tatarova, E.
N1 - Funding Information:
info:eu-repo/grantAgreement/FCT/Concurso de avaliação no âmbito do Programa Plurianual de Financiamento de Unidades de I&D (2017%2F2018) - Financiamento Base/UIDB%2F50010%2F2020/PT#
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F50010%2F2020/PT#
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/LA%2FP%2F0061%2F20207PT#
info:eu-repo/grantAgreement/FCT/3599-PPCDT/PTDC%2FNAN-MAT%2F30565%2F2017/PT#
info:eu-repo/grantAgreement/FCT/Concurso de avaliação no âmbito do Programa Plurianual de Financiamento de Unidades de I&D (2017%2F2018) - Financiamento Base/UIDB%2F04565%2F2020/PT#
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDP%2F04565%2F2020/PT#
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/LA%2FP%2F0140%2F2020/PT#
info:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F00100%2F2020/PT#
info:eu-repo/grantAgreement/FCT/Concurso de avaliação no âmbito do Programa Plurianual de Financiamento de Unidades de I&D (2017%2F2018) - Financiamento Programático/UIDP%2F00100%2F2020/PT#
info:eu-repo/grantAgreement/FCT/Concurso para Atribuição do Estatuto e Financiamento de Laboratórios Associados (LA)/LA%2FP%2F0056%2F2020/PT#
info:eu-repo/grantAgreement/FCT/Concurso de avaliação no âmbito do Programa Plurianual de Financiamento de Unidades de I&D (2017%2F2018) - Financiamento Base/UIDB%2F00068%2F2020/PT#
info:eu-repo/grantAgreement/FCT/Concurso de avaliação no âmbito do Programa Plurianual de Financiamento de Unidades de I&D (2017%2F2018) - Financiamento Programático/UIDP%2F00068%2F2020/PT#
info:eu-repo/grantAgreement/EC/H2020/766894/EU#
UC, NMS and JZ acknowledge the Slovenian Research Agency ( ARIS ) for the projects Z2-4467 , J2-50074 and program No. P1-0417 and EU Graphene Flagship FLAG-ERA III JTC 2021 project VEGA ( PR-11938 ) and M-ERA.NET 3 project ANGSTROM (The project is funded by Ministrstvo za visoko solstvo, znanost in inovacije \u2013 MVZI, Slovenia).
Publisher Copyright:
© 2024 The Author(s)
PY - 2024/12/15
Y1 - 2024/12/15
N2 - Self-standing vertically oriented carbon nanostructures (VCNs) were synthesized using a large-scale microwave plasma under low-pressure conditions, employing methane as a carbon precursor. The influence of plasma operational and substrate conditions on nanostructure growth and morphology were systematically studied. Furthermore, post-synthesis N-doping of VCNs with nitrogen content of 2.4 at% N was achieved using an Ar-N2 microwave plasma. Plasma-enabled direct deposition of VCNs, both doped and un-doped, onto nickel foils has been accomplished. The assessment of the developed nanostructures as electrodes in high-frequency AC filtering capacitors, has demonstrated an overall capacitance of approximately 480 µF at 100 Hz, with a cut-off frequency of 4 kHz for a phase angle of −45°. The excellent electrochemical performance can be attributed to the appropriate structural and morphological properties peculiar for the directly deposited on nickel foil VCNs providing binder-free electrode fabrication, thus enhancing the electrode's conductivity and charge transfer kinetics. This plasma-enabled approach for electrode design on a large scale, coupled with excellent filtering performance, paves the way for many applications in high-frequency scenarios, offering an environmentally friendly alternative to conventional electrolytic capacitors.
AB - Self-standing vertically oriented carbon nanostructures (VCNs) were synthesized using a large-scale microwave plasma under low-pressure conditions, employing methane as a carbon precursor. The influence of plasma operational and substrate conditions on nanostructure growth and morphology were systematically studied. Furthermore, post-synthesis N-doping of VCNs with nitrogen content of 2.4 at% N was achieved using an Ar-N2 microwave plasma. Plasma-enabled direct deposition of VCNs, both doped and un-doped, onto nickel foils has been accomplished. The assessment of the developed nanostructures as electrodes in high-frequency AC filtering capacitors, has demonstrated an overall capacitance of approximately 480 µF at 100 Hz, with a cut-off frequency of 4 kHz for a phase angle of −45°. The excellent electrochemical performance can be attributed to the appropriate structural and morphological properties peculiar for the directly deposited on nickel foil VCNs providing binder-free electrode fabrication, thus enhancing the electrode's conductivity and charge transfer kinetics. This plasma-enabled approach for electrode design on a large scale, coupled with excellent filtering performance, paves the way for many applications in high-frequency scenarios, offering an environmentally friendly alternative to conventional electrolytic capacitors.
KW - Binder-free electrodes
KW - High-frequency AC filtering capacitors
KW - Microwave plasma growth
KW - Plasma post-synthesis N-doping
KW - Vertically oriented carbon nanostructures
UR - http://www.scopus.com/inward/record.url?scp=85201605128&partnerID=8YFLogxK
UR - https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=nova_api&SrcAuth=WosAPI&KeyUT=WOS:001299930300001&DestLinkType=FullRecord&DestApp=WOS_CPL
U2 - 10.1016/j.apsusc.2024.161002
DO - 10.1016/j.apsusc.2024.161002
M3 - Article
AN - SCOPUS:85201605128
SN - 0169-4332
VL - 676
JO - Applied Surface Science
JF - Applied Surface Science
M1 - 161002
ER -