TY - JOUR
T1 - Phytoremediation of Heavy Metal-Contaminated Soils Using the Perennial Energy Crops Miscanthus spp. and Arundo donax L
AU - Barbosa, Bruno
AU - Boléo, Sara
AU - Sidella, Sarah
AU - Costa, Jorge
AU - Duarte, Maria Paula
AU - Mendes, Benilde
AU - Cosentino, Salvatore L.
AU - Fernando, Ana Luisa
N1 - info:eu-repo/grantAgreement/EC/FP7/289642/EU#
The authors would like to acknowledge the European Union for financially supporting this work through the Optimization of Perennial Grasses for Biomass Production (OPTIMA) project, Grant Agreement No. 289642, Collaborative project, FP7-KBBE-2011.3.1-02.
PY - 2015/12/1
Y1 - 2015/12/1
N2 - Giant reed (Arundo donax) and Miscanthus spp. were tested to evaluate their tolerance and phytoremediation capacity in soils contaminated with heavy metals. Giant reed was tested under 450 and 900 mg Zn kg−1, 300 and 600 mg Cr kg−1, and 450 and 900 mg Pb kg−1 contaminated soils, while the Miscanthus genotypes M. × giganteus, M. sinensis, and M. floridulus were tested on 450 and 900 mg Zn kg−1 contaminated soils, along 2 years. Giant reed biomass production was negatively affected by the contamination; however, yield reduction was only significant under 600 mg Cr kg−1 soil. Zn contamination reduced significantly M. × giganteus production but not M. sinensis or M. floridulus yields. Yet, M. × giganteus was also the most productive. Both grasses can be considered as indicators, once metal concentration in the biomass reflected soil metal concentration. Regarding giant reed experiments, higher modified bioconcentration factors (mBCFs, 0.3–0.6) and translocation factors (TFs, 1.0–1.1) were obtained for Zn, in the contaminated soils, followed by Cr (mBCFs, 0.2–0.4, belowground organs; TFs, 0.2–0.4) and Pb (mBCFs, 0.06–0.07, belowground organs; TFs, 0.2–0.4). Metal accumulation also followed the same pattern Zn > Cr > Pb. Miscanthus genotypes showed different phytoremediation potential facing similar soil conditions. mBCFs (0.3–0.9) and TFs (0.7–1.5) were similar among species, but highest zinc accumulation was observed with M. × giganteus due to the higher biomass production. Giant reed and M. × giganteus can be considered as interesting candidates for Zn phytoextraction, favored by the metal accumulation observed and the high biomass produced. A. donax and Miscanthus genotypes showed to be well suited for phytostabilization of heavy metal contamination as these grasses prevented the leaching of heavy metal and groundwater contamination.
AB - Giant reed (Arundo donax) and Miscanthus spp. were tested to evaluate their tolerance and phytoremediation capacity in soils contaminated with heavy metals. Giant reed was tested under 450 and 900 mg Zn kg−1, 300 and 600 mg Cr kg−1, and 450 and 900 mg Pb kg−1 contaminated soils, while the Miscanthus genotypes M. × giganteus, M. sinensis, and M. floridulus were tested on 450 and 900 mg Zn kg−1 contaminated soils, along 2 years. Giant reed biomass production was negatively affected by the contamination; however, yield reduction was only significant under 600 mg Cr kg−1 soil. Zn contamination reduced significantly M. × giganteus production but not M. sinensis or M. floridulus yields. Yet, M. × giganteus was also the most productive. Both grasses can be considered as indicators, once metal concentration in the biomass reflected soil metal concentration. Regarding giant reed experiments, higher modified bioconcentration factors (mBCFs, 0.3–0.6) and translocation factors (TFs, 1.0–1.1) were obtained for Zn, in the contaminated soils, followed by Cr (mBCFs, 0.2–0.4, belowground organs; TFs, 0.2–0.4) and Pb (mBCFs, 0.06–0.07, belowground organs; TFs, 0.2–0.4). Metal accumulation also followed the same pattern Zn > Cr > Pb. Miscanthus genotypes showed different phytoremediation potential facing similar soil conditions. mBCFs (0.3–0.9) and TFs (0.7–1.5) were similar among species, but highest zinc accumulation was observed with M. × giganteus due to the higher biomass production. Giant reed and M. × giganteus can be considered as interesting candidates for Zn phytoextraction, favored by the metal accumulation observed and the high biomass produced. A. donax and Miscanthus genotypes showed to be well suited for phytostabilization of heavy metal contamination as these grasses prevented the leaching of heavy metal and groundwater contamination.
KW - Arundo donax
KW - Contaminated soils
KW - Heavy metals
KW - Miscanthus genotypes
KW - Phytoremediation
UR - http://www.scopus.com/inward/record.url?scp=84947024408&partnerID=8YFLogxK
U2 - 10.1007/s12155-015-9688-9
DO - 10.1007/s12155-015-9688-9
M3 - Article
AN - SCOPUS:84947024408
SN - 1939-1234
VL - 8
SP - 1500
EP - 1511
JO - Bioenergy Research
JF - Bioenergy Research
IS - 4
ER -