Phase equilibria of haloalkanes dissolved in ethylsulfate- or ethylsulfonate-based ionic liquids

Research output: Contribution to journalArticlepeer-review

23 Citations (Scopus)

Abstract

The temperature-composition phase diagrams of 40 binary mixtures composed of a haloalkane dissolved M either 1-ethyl-3-methylimidazolium ethylsulfate or 1-ethyl-3-methylimidazolium ethylsulfonate were measured from ambient temperature to the boiling point temperature of the solute. The coexistence curves corresponding to liquid liquid equilibria (LLE) boundaries were visually determined and the experimental results have been correlated using either the nonrandom two-liquid (NRTL) model or a set of empirical equations capable of describing the corresponding upper critical solution temperatures (UCSTs) loci. The different types of LLE behavior were discussed in terms of the type of ionic liquid solvent, the alkyl-chain length of the solute, and the type and pattern of halogen substitution present in the haloalkane. Auxiliary simulation data (obtained by ab initio or by molecular dynamics methods) were used to corroborate some of the experimental findings. Also, they correlate in a semiquantitative way the observed LLE behavior with the dipole moments of the different solutes.
Original languageUnknown
Pages (from-to)7329-7337
JournalJournal Of Physical Chemistry B
Volume114
Issue number21
DOIs
Publication statusPublished - 1 Jan 2010

Cite this