Performance evaluation of low-complexity FDE receivers for massive MIMO schemes with 1-bit ADCs

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Citations (Scopus)

Abstract

Massive multiple input, multiple output (MIMO) schemes have been considered to support the physical layer of 5G systems and its combination with single-carrier with frequency-domain equalization (SC-FDE) schemes is particularly interesting for the uplink. However, the receiver complexity increases with the number of antennas, and it is important to have low complexity massive MIMO schemes. In this paper we consider the receiver design for the uplink of massive MIMO schemes where SC-FDE techniques are employed by the user terminals. To achieve this, we empoly low resolution analog-to-digital converters (ADCs) at each receive branch of the BS, combined with low complexity FDE techniques. It is shown that, although the nonlinear distortion levels inherent to the use of low resolution ADCs can be very high, we can have excellent performance, even with low complexity FDE receivers, provided that the number of receiver antennas is higher than the number of user terminals.1

Original languageEnglish
Title of host publication2017 IEEE 86th Vehicular Technology Conference, VTC Fall 2017 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1-5
Number of pages5
ISBN (Electronic)9781509059355
DOIs
Publication statusPublished - 8 Feb 2018
Event86th IEEE Vehicular Technology Conference, VTC Fall 2017 - Toronto, Canada
Duration: 24 Sep 201727 Sep 2017

Publication series

NameIEEE Vehicular Technology Conference VTC
PublisherInstitute of Electrical and Electronics Engineers Inc.
Volume2017-September
ISSN (Print)1550-2252

Conference

Conference86th IEEE Vehicular Technology Conference, VTC Fall 2017
Country/TerritoryCanada
CityToronto
Period24/09/1727/09/17

Keywords

  • ADC
  • Iterative receivers
  • Massive MIMO
  • Nonlinear distortion effects
  • SC-FDE

Fingerprint

Dive into the research topics of 'Performance evaluation of low-complexity FDE receivers for massive MIMO schemes with 1-bit ADCs'. Together they form a unique fingerprint.

Cite this