Abstract
Therapeutic solutions for injuries in the peripheral nervous system are limited and not existing in the case of the central nervous system. The electrical stimulation of cells through a cell-supporting conductive scaffold may contribute to new therapeutic solutions for nerve regeneration. In this work, biocompatible Polylactic acid (PLA) fibrous scaffolds incorporating Fe(III)Tosylate (FeTos) were produced by electrospinning a mixture of PLA/FeTos solutions towards a rotating cylinder, inducing fiber alignment. Fibers were coated with the conductive polymer Poly(3,4 ethylenedioxythiophene) (PEDOT) formed by vapor-phase polymerization of EDOT at 70 °C for 2 h. Different solvents (ETH, DMF and THF) were used as FeTos solvents to investigate the impact on the scaffold’s conductivity. Scaffold conductivity was estimated to be as high as 1.50 × 10−1 S/cm when FeTos was dissolved in DMF. In vitro tests were performed to evaluate possible scaffold cytotoxicity, following ISO 10993-5, revealing no cytotoxic effects. Differentiation and growth of cells from the neural cell line SH-SY5Y seeded on the scaffolds were also assessed, with neuritic extensions observed in cells differentiated in neurons with retinoic acid. These extensions tended to follow the preferential alignment of the scaffold fibers.
Original language | English |
---|---|
Article number | 4004 |
Number of pages | 17 |
Journal | Polymers |
Volume | 15 |
Issue number | 19 |
DOIs | |
Publication status | Published - 5 Oct 2023 |
Keywords
- conductivity
- electrospinning
- Fe(III)Tosylate
- neural regeneration
- PEDOT
- SH-SY5Y neuronal growth
- vapor-phase polymerization