TY - GEN
T1 - Parameter tuning of evolutionary reactions systems
AU - Castelli, Mauro
AU - Manzoni, Luca
AU - Vanneschi, Leonardo
PY - 2012/8/13
Y1 - 2012/8/13
N2 - Reaction systems is a formalism inspired by chemical reactions introduced by Rozenberg and Ehrenfeucht. Recently, an evolutionary algorithm based on this formalism, called Evolutionary Reaction Systems, has been presented. This new algorithm proved to have comparable performances to other well-established machine learning methods, like genetic programming, neural networks and support vector machines on both artificial and real-life problems. Even if the results are encouraging, to make Evolutionary Reaction Systems an established evolutionary algorithm, an in depth analysis of the effect of its parameters on the search process is needed, with particular focus on those parameters that are typical of Evolutionary Reaction Systems and do not have a counterpart in traditional evolutionary algorithms. Here we address this problem for the first time. The results we present show that one particular parameter, between the ones tested, has a great influence on the performances of Evolutionary Reaction Systems, and thus its setting deserves practitioners' particular attention: the number of symbols used to represent the reactions that compose the system. Furthermore, this work represents a first step towards the definition of a set of default parameter values for Evolutionary Reaction Systems, that should facilitate their use for beginners or inexpert practitioners.
AB - Reaction systems is a formalism inspired by chemical reactions introduced by Rozenberg and Ehrenfeucht. Recently, an evolutionary algorithm based on this formalism, called Evolutionary Reaction Systems, has been presented. This new algorithm proved to have comparable performances to other well-established machine learning methods, like genetic programming, neural networks and support vector machines on both artificial and real-life problems. Even if the results are encouraging, to make Evolutionary Reaction Systems an established evolutionary algorithm, an in depth analysis of the effect of its parameters on the search process is needed, with particular focus on those parameters that are typical of Evolutionary Reaction Systems and do not have a counterpart in traditional evolutionary algorithms. Here we address this problem for the first time. The results we present show that one particular parameter, between the ones tested, has a great influence on the performances of Evolutionary Reaction Systems, and thus its setting deserves practitioners' particular attention: the number of symbols used to represent the reactions that compose the system. Furthermore, this work represents a first step towards the definition of a set of default parameter values for Evolutionary Reaction Systems, that should facilitate their use for beginners or inexpert practitioners.
KW - evolutionary algorithms
KW - parameter tuning
KW - reaction systems
UR - http://www.scopus.com/inward/record.url?scp=84864680818&partnerID=8YFLogxK
U2 - 10.1145/2330163.2330265
DO - 10.1145/2330163.2330265
M3 - Conference contribution
AN - SCOPUS:84864680818
SN - 9781450311779
T3 - GECCO'12 - Proceedings of the 14th International Conference on Genetic and Evolutionary Computation
SP - 727
EP - 734
BT - GECCO'12 - Proceedings of the 14th International Conference on Genetic and Evolutionary Computation
T2 - 14th International Conference on Genetic and Evolutionary Computation, GECCO'12
Y2 - 7 July 2012 through 11 July 2012
ER -